A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia (original) (raw)
Stevenson, F.K. & Caligaris-Cappio, F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood103, 4389–4395 (2004). ArticleCASPubMed Google Scholar
Goldin, L.R., Bjorkholm, M., Kristinsson, S.Y., Turesson, I. & Landgren, O. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin's lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica94, 647–653 (2009). PubMedPubMed Central Google Scholar
Di Bernardo, M.C. et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat. Genet.40, 1204–1210 (2008). CASPubMed Google Scholar
Crowther-Swanepoel, D. et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat. Genet.42, 132–136 (2010). CASPubMedPubMed Central Google Scholar
Berndt, S.I. et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat. Genet.45, 868–876 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol.28, 817–825 (2010). ArticleCASPubMedPubMed Central Google Scholar
Houlston, R.S. et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat. Genet.42, 973–977 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chubb, D. et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat. Genet.45, 1221–1225 (2013). ArticleCASPubMedPubMed Central Google Scholar
Jones, A.M. et al. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut61, 248–254 (2012). ArticleCASPubMed Google Scholar
Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet.45, 422–427 (2013). ArticleCASPubMedPubMed Central Google Scholar
Verma-Gaur, J., Hauser, J. & Grundstrom, T. Negative feedback regulation of antigen receptors through calmodulin inhibition of E2A. J. Immunol.188, 6175–6183 (2012). ArticleCASPubMed Google Scholar
Ramsay, A.J. et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet.45, 526–530 (2013). ArticleCASPubMed Google Scholar
Petersen, G.M. et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet.42, 224–228 (2010). ArticleCASPubMedPubMed Central Google Scholar
Barrett, J.H. et al. Genome-wide association study identifies three new melanoma susceptibility loci. Nat. Genet.43, 1108–1113 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rothman, N. et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet.42, 978–984 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bojesen, S.E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet.45, 371–384 (2013). ArticleCASPubMedPubMed Central Google Scholar
Haiman, C.A. et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nat. Genet.43, 1210–1214 (2011). ArticleCASPubMedPubMed Central Google Scholar
Karlsson, R. et al. Investigation of six testicular germ cell tumor susceptibility genes suggests a parent-of-origin effect in SPRY4. Hum. Mol. Genet.22, 3373–3380 (2013). ArticleCASPubMed Google Scholar
Hamblin, T.J., Davis, Z., Gardiner, A., Oscier, D.G. & Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood94, 1848–1854 (1999). CASPubMed Google Scholar
Di Bernardo, M.C., Broderick, P., Catovsky, D. & Houlston, R.S. Common genetic variation contributes significantly to the risk of developing chronic lymphocytic leukemia. Haematologica98, e23–e24 (2013). ArticlePubMed Google Scholar
Swerdlow, S.H. et al. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues (IARC Press, Lyon, France, 2008).
Catovsky, D. et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet370, 230–239 (2007). ArticleCASPubMed Google Scholar
Power, C. & Elliott, J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int. J. Epidemiol.35, 34–41 (2006). ArticlePubMed Google Scholar
Eisen, T., Matakidou, A. & Houlston, R. Identification of low penetrance alleles for lung cancer: the GEnetic Lung CAncer Predisposition Study (GELCAPS). BMC Cancer8, 244 (2008). ArticlePubMedPubMed Central Google Scholar
Smedby, K.E. et al. Ultraviolet radiation exposure and risk of malignant lymphomas. J. Natl. Cancer Inst.97, 199–209 (2005). ArticlePubMed Google Scholar
van Dongen, J.J. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia17, 2257–2317 (2003). ArticleCASPubMed Google Scholar
van Krieken, J.H. et al. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia21, 201–206 (2007). ArticleCASPubMed Google Scholar
Nordfjäll, K., Osterman, P., Melander, O., Nilsson, P. & Roos, G. hTERT (–1327)T/C polymorphism is not associated with age-related telomere attrition in peripheral blood. Biochem. Biophys. Res. Commun.358, 215–218 (2007). ArticlePubMed Google Scholar
Mansouri, L. et al. Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients. Am. J. Hematol.88, 647–651 (2013). ArticleCASPubMed Google Scholar
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet.81, 559–575 (2007). ArticleCASPubMedPubMed Central Google Scholar
Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet.37, 1243–1246 (2005). ArticleCASPubMed Google Scholar
Petitti, D. Meta-analysis, Decision Analysis, and Cost-effectiveness Analysis (Oxford University Press, 1994).
Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med.21, 1539–1558 (2002). ArticlePubMed Google Scholar
Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science310, 321–324 (2005). ArticleCASPubMed Google Scholar
Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science296, 2225–2229 (2002). ArticleCASPubMed Google Scholar
Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res.40, D930–D934 (2012). ArticleCASPubMed Google Scholar
Yang, T.P. et al. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics26, 2474–2476 (2010). ArticleCASPubMedPubMed Central Google Scholar