Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases (original) (raw)
Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun.120, 885–890 (1984). ArticleCASPubMed Google Scholar
Kosik, K.S., Joachim, C.L. & Selkoe, D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA83, 4044–4048 (1986). ArticleCASPubMedPubMed Central Google Scholar
Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M. & Goedert, M. α-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA95, 6469–6473 (1998). ArticleCASPubMedPubMed Central Google Scholar
Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science314, 130–133 (2006). ArticleCASPubMed Google Scholar
DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science277, 1990–1993 (1997). ArticleCASPubMed Google Scholar
Bolton, D.C., McKinley, M.P. & Prusiner, S.B. Identification of a protein that purifies with the scrapie prion. Science218, 1309–1311 (1982). ArticleCASPubMed Google Scholar
Ross, C.A. & Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med.10 (suppl.), S10–S17 (2004). ArticleCASPubMed Google Scholar
Goedert, M. Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and α-synucleinopathies. Phil. Trans. R. Soc. Lond. B354, 1101–1118 (1999). ArticleCAS Google Scholar
Thorpe, J.R., Tang, H., Atherton, J. & Cairns, N.J. Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. J. Neural Transm.115, 1661–1671 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lin, W.L. & Dickson, D.W. Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol.116, 205–213 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lee, S.J., Desplats, P., Sigurdson, C., Tsigelny, I. & Masliah, E. Cell-to-cell transmission of non-prion protein aggregates. Nature reviews. Neurology6, 702–706 (2010). ArticleCASPubMedPubMed Central Google Scholar
Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol.11, 301–307 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jucker, M. & Walker, L.C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol.70, 532–540 (2011). ArticleCASPubMedPubMed Central Google Scholar
Aguzzi, A., Sigurdson, C. & Heikenwaelder, M. Molecular mechanisms of prion pathogenesis. Annu. Rev. Pathol.3, 11–40 (2008). ArticleCASPubMed Google Scholar
Volpicelli-Daley, L.A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron72, 57–71 (2011). ArticleCASPubMedPubMed Central Google Scholar
Luk, K.C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science338, 949–953 (2012). ArticleCASPubMedPubMed Central Google Scholar
Guo, J.L. & Lee, V.M. Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem.286, 15317–15331 (2011). ArticleCASPubMedPubMed Central Google Scholar
Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J. Neurosci.33, 1024–1037 (2013). ArticleCASPubMedPubMed Central Google Scholar
Luk, K.C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med.209, 975–986 (2012). ArticleCASPubMedPubMed Central Google Scholar
Stöhr, J. et al. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. Proc. Natl. Acad. Sci. USA109, 11025–11030 (2012). ArticlePubMedPubMed Central Google Scholar
Ulusoy, A. et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med.5, 1051–1059 (2013). ArticleCASPubMed Central Google Scholar
Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid-β-peptide. Nat. Rev. Mol. Cell Biol.8, 101–112 (2007). ArticleCASPubMed Google Scholar
Maeda, S. et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry46, 3856–3861 (2007). ArticleCASPubMed Google Scholar
Patterson, K.R. et al. Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease. J. Biol. Chem.286, 23063–23076 (2011). ArticleCASPubMedPubMed Central Google Scholar
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol.82, 239–259 (1991). ArticleCASPubMed Google Scholar
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging24, 197–211 (2003). ArticlePubMed Google Scholar
Braak, H. et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages). J. Neurol.249, iii1–iii5 (2002). Article Google Scholar
Kosaka, K., Tsuchiya, K. & Yoshimura, M. Lewy body disease with and without dementia: a clinicopathological study of 35 cases. Clin. Neuropathol.7, 299–305 (1988). CASPubMed Google Scholar
Thal, D.R., Rub, U., Orantes, M. & Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology58, 1791–1800 (2002). ArticlePubMed Google Scholar
Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C. & Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell140, 918–934 (2010). ArticleCASPubMedPubMed Central Google Scholar
Braak, H. & Del Tredici, K. Alzheimer's pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol.121, 589–595 (2011). ArticleCASPubMed Google Scholar
Friedhoff, P., Schneider, A., Mandelkow, E.M. & Mandelkow, E. Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry37, 10223–10230 (1998). ArticleCASPubMed Google Scholar
Wood, S.J. et al. α-synuclein fibrillogenesis is nucleation-dependent: implications for the pathogenesis of Parkinson's disease. J. Biol. Chem.274, 19509–19512 (1999). ArticleCASPubMed Google Scholar
Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science313, 1781–1784 (2006). ArticleCASPubMed Google Scholar
Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl. Acad. Sci. USA110, 9535–9540 (2013). ArticlePubMedPubMed Central Google Scholar
Wu, J.W. et al. small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem.288, 1856–1870 (2013). ArticleCASPubMed Google Scholar
Tapiola, T. et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol.66, 382–389 (2009). ArticlePubMed Google Scholar
Mollenhauer, B. et al. Total CSF α-synuclein is lower in de novo Parkinson patients than in healthy subjects. Neurosci. Lett.532, 44–48 (2013). ArticleCASPubMed Google Scholar
van Dijk, K.D. et al. Reduced α-synuclein levels in cerebrospinal fluid in Parkinson's disease are unrelated to clinical and imaging measures of disease severity. Eur. J. Neurol. doi:10.1111/ene.12176 (2013).
Yamada, K. et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J. Neurosci.31, 13110–13117 (2011). ArticleCASPubMedPubMed Central Google Scholar
Emmanouilidou, E. et al. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci.30, 6838–6851 (2010). ArticleCASPubMedPubMed Central Google Scholar
Saman, S. et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem.287, 3842–3849 (2012). ArticleCASPubMed Google Scholar
Vella, L.J. et al. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J. Pathol.211, 582–590 (2007). ArticleCASPubMed Google Scholar
Pooler, A.M., Phillips, E.C., Lau, D.H., Noble, W. & Hanger, D.P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep.14, 389–394 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kfoury, N., Holmes, B.B., Jiang, H., Holtzman, D.M. & Diamond, M.I. Trans-cellular propagation of tau aggregation by fibrillar species. J. Biol. Chem.287, 19440–19451 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ren, P.H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol.11, 219–225 (2009). ArticleCASPubMedPubMed Central Google Scholar
Münch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl. Acad. Sci. USA108, 3548–3553 (2011). ArticlePubMedPubMed Central Google Scholar
Frost, B., Jacks, R.L. & Diamond, M.I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem.284, 12845–12852 (2009). ArticleCASPubMedPubMed Central Google Scholar
Holmes, B.B. et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas.1301440110 (2013).
Hansen, C. et al. α-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest.121, 715–725 (2011). ArticleCASPubMedPubMed Central Google Scholar
Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl. Acad. Sci. USA106, 13010–13015 (2009). ArticlePubMedPubMed Central Google Scholar
Guo, J.L. & Lee, V.M. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett.587, 717–723 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gousset, K. et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol.11, 328–336 (2009). ArticleCASPubMed Google Scholar
Dietzschold, B. et al. Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J. Virol.56, 12–18 (1985). CASPubMedPubMed Central Google Scholar
Cearley, C.N. et al. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol. Ther.16, 1710–1718 (2008). ArticleCASPubMed Google Scholar
Cearley, C.N. & Wolfe, J.H. A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J. Neurosci.27, 9928–9940 (2007). ArticleCASPubMedPubMed Central Google Scholar
Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol.72, 1438–1445 (1998). CASPubMedPubMed Central Google Scholar
Thoulouze, M.I. et al. The neural cell adhesion molecule is a receptor for rabies virus. J. Virol.72, 7181–7190 (1998). CASPubMedPubMed Central Google Scholar
Weissmann, C., Enari, M., Klohn, P.C., Rossi, D. & Flechsig, E. Transmission of prions. Proc. Natl. Acad. Sci. USA99 (suppl. 4), 16378–16383 (2002). ArticleCASPubMedPubMed Central Google Scholar
Irwin, D.J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol.70, 462–468 (2013). ArticlePubMedPubMed Central Google Scholar
Brown, P., Gajdusek, D.C., Gibbs, C.J. Jr. & Asher, D.M. Potential epidemic of Creutzfeldt-Jakob disease from human growth hormone therapy. N. Engl. J. Med.313, 728–731 (1985). ArticleCASPubMed Google Scholar
Kimberlin, R.H. & Walker, C.A. Pathogenesis of mouse scrapie: effect of route of inoculation on infectivity titres and dose-response curves. J. Comp. Pathol.88, 39–47 (1978). ArticleCASPubMed Google Scholar
Aguzzi, A. & Calella, A.M. Prions: protein aggregation and infectious diseases. Physiol. Rev.89, 1105–1152 (2009). ArticleCASPubMed Google Scholar
Braak, H. & Del Tredici, K. Neuroanatomy and pathology of sporadic Parkinson's disease. Adv. Anat. Embryol. Cell Biol.201, 1–119 (2009). PubMed Google Scholar
Iwai, A. et al. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron14, 467–475 (1995). ArticleCASPubMed Google Scholar
Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science216, 136–144 (1982). ArticleCASPubMed Google Scholar
Wang, F., Wang, X., Yuan, C.G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science327, 1132–1135 (2010). ArticleCASPubMedPubMed Central Google Scholar
Colby, D.W. et al. Design and construction of diverse mammalian prion strains. Proc. Natl. Acad. Sci. USA106, 20417–20422 (2009). ArticlePubMedPubMed Central Google Scholar
Makarava, N. et al. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol.119, 177–187 (2010). ArticleCASPubMedPubMed Central Google Scholar
Goedert, M. et al. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature383, 550–553 (1996). ArticleCASPubMed Google Scholar
Westaway, D. et al. Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell76, 117–129 (1994). ArticleCASPubMed Google Scholar
Hsiao, K.K. et al. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc. Natl. Acad. Sci. USA91, 9126–9130 (1994). ArticleCASPubMedPubMed Central Google Scholar
Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature379, 339–343 (1996). ArticleCASPubMed Google Scholar
Sandberg, M.K., Al-Doujaily, H., Sharps, B., Clarke, A.R. & Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature470, 540–542 (2011). ArticleCASPubMed Google Scholar
Arriagada, P.V., Growdon, J.H., Hedley-Whyte, E.T. & Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology42, 631–639 (1992). ArticleCASPubMed Google Scholar
Roberson, E.D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science316, 750–754 (2007). ArticleCASPubMed Google Scholar
Ittner, L.M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models. Cell142, 387–397 (2010). ArticleCASPubMed Google Scholar
Dahlgren, K.N. et al. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem.277, 32046–32053 (2002). ArticleCASPubMed Google Scholar
Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA95, 6448–6453 (1998). ArticleCASPubMedPubMed Central Google Scholar
Walsh, D.M. et al. Naturally secreted oligomers of amyloid-β protein potently inhibit hippocampal long-term potentiation in vivo. Nature416, 535–539 (2002). ArticleCASPubMed Google Scholar
Wang, H.W. et al. Soluble oligomers of β-amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res.924, 133–140 (2002). ArticleCASPubMed Google Scholar
Cohen, S.I. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA110, 9758–9763 (2013). ArticlePubMedPubMed Central Google Scholar
Ding, T.T., Lee, S.J., Rochet, J.C. & Lansbury, P.T. Jr. Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry41, 10209–10217 (2002). ArticleCASPubMed Google Scholar
Lashuel, H.A. et al. α-Synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol.322, 1089–1102 (2002). ArticleCASPubMed Google Scholar
Winner, B. et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA108, 4194–4199 (2011). ArticlePubMedPubMed Central Google Scholar
Karpinar, D.P. et al. Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models. EMBO J.28, 3256–3268 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tanik, S.A., Schultheiss, C.E., Volpicelli-Daley, L.A., Brunden, K.R. & Lee, V.M. Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J. Biol. Chem.288, 15194–15210 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wittmann, C.W. et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science293, 711–714 (2001). ArticleCASPubMed Google Scholar
Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron53, 337–351 (2007). ArticleCASPubMed Google Scholar
Aguzzi, A., Heikenwalder, M. & Polymenidou, M. Insights into prion strains and neurotoxicity. Nat. Rev. Mol. Cell Biol.8, 552–561 (2007). ArticleCASPubMed Google Scholar
Aoyagi, H., Hasegawa, M. & Tamaoka, A. Fibrillogenic nuclei composed of P301L mutant tau induce elongation of P301L tau but not wild-type tau. J. Biol. Chem.282, 20309–20318 (2007). ArticleCASPubMed Google Scholar
Yonetani, M. et al. Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J. Biol. Chem.284, 7940–7950 (2009). ArticleCASPubMedPubMed Central Google Scholar
Furukawa, Y., Kaneko, K., Yamanaka, K. & Nukina, N. Mutation-dependent polymorphism of Cu,Zn-superoxide dismutase aggregates in the familial form of amyotrophic lateral sclerosis. J. Biol. Chem.285, 22221–22231 (2010). ArticleCASPubMedPubMed Central Google Scholar
Guo, J.L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell154, 103–117 (2013). ArticleCASPubMed Google Scholar
Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science307, 262–265 (2005). ArticleCASPubMed Google Scholar
Nekooki-Machida, Y. et al. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc. Natl. Acad. Sci. USA106, 9679–9684 (2009). ArticlePubMedPubMed Central Google Scholar
Heilbronner, G. et al. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep.14, 1017–1022 (2013). ArticleCASPubMedPubMed Central Google Scholar
Morozova, O.A., March, Z.M., Robinson, A.S. & Colby, D.W. Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein. Biochemistry52, 6960–6967 (2013). ArticleCASPubMed Google Scholar
Tolnay, M. & Probst, A. The neuropathological spectrum of neurodegenerative tauopathies. IUBMB Life55, 299–305 (2003). ArticleCASPubMed Google Scholar
Dickson, D.W. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J. Neurol.246 (suppl. 2), II6–II15 (1999). ArticlePubMed Google Scholar
Mayeux, R. et al. A population-based investigation of Parkinson's disease with and without dementia—relationship to age and gender. Arch. Neurol.49, 492–497 (1992). ArticleCASPubMed Google Scholar
Morris, J.C., Drazner, M., Fulling, K., Grant, E.A. & Goldring, J. Clinical and pathological aspects of parkinsonism in Alzheimer's disease. A role for extranigral factors? Arch. Neurol.46, 651–657 (1989). ArticleCASPubMed Google Scholar
Galpern, W.R. & Lang, A.E. Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann. Neurol.59, 449–458 (2006). ArticleCASPubMed Google Scholar
Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R. & Morimoto, R.I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science311, 1471–1474 (2006). ArticleCASPubMed Google Scholar
Galloway, P.G., Bergeron, C. & Perry, G. The presence of tau distinguishes Lewy bodies of diffuse Lewy body disease from those of idiopathic Parkinson disease. Neurosci. Lett.100, 6–10 (1989). ArticleCASPubMed Google Scholar
Ishizawa, T., Mattila, P., Davies, P., Wang, D. & Dickson, D.W. Colocalization of tau and α-synuclein epitopes in Lewy bodies. J. Neuropathol. Exp. Neurol.62, 389–397 (2003). ArticleCASPubMed Google Scholar
Lu, J.X. et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell154, 1257–1268 (2013). ArticleCASPubMed Google Scholar
Korecka, J.A., Verhaagen, J. & Hol, E.M. Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen. Med.2, 425–446 (2007). ArticleCASPubMed Google Scholar
Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B. & Olanow, C.W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med.14, 504–506 (2008). ArticleCASPubMed Google Scholar
Li, J.Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med.14, 501–503 (2008). ArticleCASPubMed Google Scholar
Schenk, D.B., Seubert, P., Grundman, M. & Black, R. Aβ immunotherapy: lessons learned for potential treatment of Alzheimer's disease. Neurodegener. Dis.2, 255–260 (2005). ArticleCASPubMed Google Scholar
Banks, W.A. et al. Passage of amyloid β protein antibody across the blood-brain barrier in a mouse model of Alzheimer's disease. Peptides23, 2223–2226 (2002). ArticleCASPubMed Google Scholar
Couch, J.A. et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci. Transl. Med.5, 183ra157 (2013). ArticleCAS Google Scholar
Caughey, B. & Lansbury, P.T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.26, 267–298 (2003). ArticleCASPubMed Google Scholar
Nonaka, T., Watanabe, S.T., Iwatsubo, T. & Hasegawa, M. Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases. J. Biol. Chem.285, 34885–34898 (2010). ArticleCASPubMedPubMed Central Google Scholar
Luk, K.C. et al. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. USA106, 20051–20056 (2009). ArticlePubMedPubMed Central Google Scholar
Chen, A.K. et al. Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J. Am. Chem. Soc.132, 1186–1187 (2010). ArticleCASPubMed Google Scholar
Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep.4, 124–134 (2013). ArticleCASPubMed Google Scholar