Brown, M.S. & Goldstein, J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell89, 331–340 (1997). ArticleCASPubMed Google Scholar
Zelcer, N., Hong, C., Boyadjian, R. & Tontonoz, P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science325, 100–104 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hua, X. et al. SREBP-2, a second basic-helix-loop-helix–leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. USA90, 11603–11607 (1993). ArticleCASPubMedPubMed Central Google Scholar
Tontonoz, P., Kim, J.B., Graves, R.A. & Spiegelman, B.M. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol. Cell. Biol.13, 4753–4759 (1993). ArticleCASPubMedPubMed Central Google Scholar
Yokoyama, C. et al. SREBP-1, a basic-helix-loop-helix–leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell75, 187–197 (1993). ArticleCASPubMed Google Scholar
Goldstein, J.L. & Brown, M.S. Regulation of the mevalonate pathway. Nature343, 425–430 (1990). ArticleCASPubMed Google Scholar
Walker, A.K. et al. A conserved SREBP-1–phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell147, 840–852 (2011). ArticleCASPubMedPubMed Central Google Scholar
Horton, J.D. et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. USA100, 12027–12032 (2003). ArticleCASPubMedPubMed Central Google Scholar
Maxwell, K.N., Soccio, R.E., Duncan, E.M., Sehayek, E. & Breslow, J.L. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J. Lipid Res.44, 2109–2119 (2003). ArticleCASPubMed Google Scholar
Beaven, S.W. & Tontonoz, P. Nuclear receptors in lipid metabolism: targeting the heart of dyslipidemia. Annu. Rev. Med.57, 313–329 (2006). ArticleCASPubMed Google Scholar
Ambros, V. The functions of animal microRNAs. Nature431, 350–355 (2004). CASPubMed Google Scholar
Filipowicz, W., Bhattacharyya, S.N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet.9, 102–114 (2008). ArticleCASPubMed Google Scholar
Najafi-Shoushtari, S.H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science328, 1566–1569 (2010). ArticleCASPubMed Google Scholar
Jeon, T.I. et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab.18, 51–61 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rayner, K.J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest.121, 2921–2931 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rayner, K.J. et al. Inhibition of miR-33a/b in nonhuman primates raises plasma HDL and lowers VLDL triglycerides. Nature478, 404–407 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rottiers, V. et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci. Transl. Med.5, 212ra162 (2013). ArticleCASPubMedPubMed Central Google Scholar
de Aguiar Vallim, T.Q. et al. MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR. Circ. Res.112, 1602–1612 (2013). ArticleCASPubMedPubMed Central Google Scholar
Elmén, J. et al. LNA-mediated microRNA silencing in nonhuman primates. Nature452, 896–899 (2008). ArticleCASPubMed Google Scholar
Elmén, J. et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to upregulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res.36, 1153–1162 (2008). ArticleCASPubMed Google Scholar
Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.3, 87–98 (2006). ArticleCASPubMed Google Scholar
Soh, J., Iqbal, J., Queiroz, J., Fernandez-Hernando, C. & Hussain, M.M. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat. Med.19, 892–900 (2013). ArticleCASPubMedPubMed Central Google Scholar
Brown, M.S., Dana, S.E. & Goldstein, J.L. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts by lipoproteins. Proc. Natl. Acad. Sci. USA70, 2162–2166 (1973). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, J.L., Basu, S.K., Brunschede, G.Y. & Brown, M.S. Release of low-density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell7, 85–95 (1976). ArticleCASPubMed Google Scholar
Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high-throughput screening assays. J. Biomol. Screen.4, 67–73 (1999). ArticleCASPubMed Google Scholar
Barad, O. et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res.14, 2486–2494 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vickers, K.C. et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology57, 533–542 (2013). ArticleCASPubMed Google Scholar
Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet.45, 1345–1352 (2013). ArticleCASPubMedPubMed Central Google Scholar
Global Lipids Genetics Consortium. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet.45, 1274–1283 (2013).
Huan, T. et al. Genome-wide identification of microRNA expression quantitative trait loci. Nat. Commun.6, 6601 (2015). ArticleCASPubMed Google Scholar
Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature474, 649–653 (2011). ArticleCASPubMed Google Scholar
Mercer, J. et al. RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection. Cell Rep.2, 1036–1047 (2012). ArticleCASPubMed Google Scholar
Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Google Scholar
Dweep, H., Gretz, N. & Sticht, C. miRWalk database for miRNA-target interactions. Methods Mol. Biol.1182, 289–305 (2014). ArticleCASPubMed Google Scholar
Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.4, 44–57 (2009). ArticleCAS Google Scholar
Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res.39, D561–D568 (2011). ArticleCASPubMed Google Scholar
Down, T.A. & Hubbard, T.J. Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res.12, 458–461 (2002). ArticleCASPubMedPubMed Central Google Scholar
Saini, H.K., Griffiths-Jones, S. & Enright, A.J. Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. USA104, 17719–17724 (2007). ArticlePubMedPubMed Central Google Scholar
Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol.28, 817–825 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shimomura, I., Bashmakov, Y. & Horton, J.D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem.274, 30028–30032 (1999). ArticleCASPubMed Google Scholar
Shimomura, I., Shimano, H., Horton, J.D., Goldstein, J.L. & Brown, M.S. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J. Clin. Invest.99, 838–845 (1997). ArticleCASPubMedPubMed Central Google Scholar
Horton, J.D., Bashmakov, Y., Shimomura, I. & Shimano, H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. USA95, 5987–5992 (1998). ArticleCASPubMedPubMed Central Google Scholar
Peet, D.J. et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell93, 693–704 (1998). ArticleCASPubMed Google Scholar
Yoshikawa, T. et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol.21, 2991–3000 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dietschy, J.M., Turley, S.D. & Spady, D.K. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J. Lipid Res.34, 1637–1659 (1993). CASPubMed Google Scholar
Oram, J.F. & Vaughan, A.M. ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Curr. Opin. Lipidol.11, 253–260 (2000). ArticleCASPubMed Google Scholar
Yang, M. et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res.55, 226–238 (2014). ArticleCASPubMedPubMed Central Google Scholar
Dávalos, A. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. USA108, 9232–9237 (2011). ArticlePubMedPubMed Central Google Scholar
Suárez, Y., Fernandez-Hernando, C., Pober, J.S. & Sessa, W.C. Dicer-dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ. Res.100, 1164–1173 (2007). ArticleCASPubMed Google Scholar
Goedeke, L. et al. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol. Cell. Biol.33, 2339–2352 (2013). ArticleCASPubMedPubMed Central Google Scholar
Allen, R.M., Marquart, T.J., Jesse, J.J. & Baldan, A. Control of very low–density lipoprotein secretion by _N_-ethylmaleimide–sensitive factor and miR-33. Circ. Res.115, 10–22 (2014). ArticleCASPubMedPubMed Central Google Scholar
Calvo, D., Gomez-Coronado, D., Suarez, Y., Lasuncion, M.A. & Vega, M.A. Human CD36 is a high-affinity receptor for the native lipoproteins HDL, LDL and VLDL. J. Lipid Res.39, 777–788 (1998). CASPubMed Google Scholar
Suárez, Y. et al. Synergistic upregulation of low-density lipoprotein receptor activity by tamoxifen and lovastatin. Cardiovasc. Res.64, 346–355 (2004). ArticleCASPubMed Google Scholar
Chamorro-Jorganes, A., Araldi, E., Rotllan, N., Cirera-Salinas, D. & Suarez, Y. Autoregulation of glypican-1 by intronic microRNA-149 fine tunes the angiogenic response to FGF2 in human endothelial cells. J. Cell Sci.127, 1169–1178 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ramirez, C.M. et al. MicroRNA-758 regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol.31, 2707–2714 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, W. et al. Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. Gastroenterology131, 878–884 (2006). ArticleCASPubMed Google Scholar
Mattison, J.A. et al. Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab.20, 183–190 (2014). ArticleCASPubMedPubMed Central Google Scholar
Goedeke, L. et al. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol. Med.6, 1133–1141 (2014). ArticleCASPubMedPubMed Central Google Scholar
Miller, A.M. et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS ONE8, e72324 (2013). ArticleCASPubMedPubMed Central Google Scholar