Combining competition assays with genetic complementation strategies to dissect mouse embryonic stem cell self-renewal and pluripotency (original) (raw)
Zhang, X. et al. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat. Cell. Biol.13, 1092–1099 (2011). ArticleCAS Google Scholar
Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature442, 533–538 (2006). ArticleCAS Google Scholar
Jiang, H. et al. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell144, 513–525 (2011). ArticleCAS Google Scholar
Ang, Y.S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell145, 183–197 (2011). ArticleCAS Google Scholar
Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell32, 491–502 (2008). ArticleCAS Google Scholar
Schaniel, C. et al. Smarcc1/Baf155 couples self-renewal gene repression with changes in chromatin structure in mouse embryonic stem cells. Stem Cells27, 2979–2991 (2009). CASPubMedPubMed Central Google Scholar
Fazzio, T.G., Huff, J.T. & Panning, B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell134, 162–174 (2008). ArticleCAS Google Scholar
Singhal, N. et al. Chromatin-remodeling components of the BAF complex facilitate reprogramming. Cell141, 943–955 (2010). ArticleCAS Google Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med.10, 55–63 (2004). ArticleCAS Google Scholar
Smith, A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature336, 688–690 (1988). ArticleCAS Google Scholar
Williams, R.L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature336, 684–687 (1988). ArticleCAS Google Scholar
Ying, Q.L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell115, 281–292 (2003). ArticleCAS Google Scholar
Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell133, 1106–1117 (2008). ArticleCAS Google Scholar
Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell134, 521–533 (2008). ArticleCAS Google Scholar
Loh, Y.H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet.38, 431–440 (2006). ArticleCAS Google Scholar
Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S.H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell132, 1049–1061 (2008). ArticleCAS Google Scholar
Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature444, 364–368 (2006). ArticleCAS Google Scholar
Mathur, D. et al. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Genome Biol.9, R126 (2008). Article Google Scholar
Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell6, 382–395 (2010). ArticleCAS Google Scholar
van den Berg, D.L. et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell6, 369–381 (2010). ArticleCAS Google Scholar
Hu, G. et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev.23, 837–848 (2009). ArticleCAS Google Scholar
Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci. USA106, 5181–5186 (2009). ArticleCAS Google Scholar
Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113, 643–655 (2003). ArticleCAS Google Scholar
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003). ArticleCAS Google Scholar
Dejosez, M. et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell133, 1162–1174 (2008). ArticleCAS Google Scholar
Chia, N.Y. et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature468, 316–320 (2010). ArticleCAS Google Scholar
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). ArticleCAS Google Scholar
Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature431, 343–349 (2004). ArticleCAS Google Scholar
Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCAS Google Scholar
Schaniel, C. et al. Delivery of short hairpin RNAs—triggers of gene silencing—into mouse embryonic stem cells. Nat. Methods3, 397–400 (2006). ArticleCAS Google Scholar
Hannon, G.J. & Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature431, 371–378 (2004). ArticleCAS Google Scholar
McCaffrey, A.P. et al. RNA interference in adult mice. Nature418, 38–39 (2002). ArticleCAS Google Scholar
McManus, M.T., Petersen, C.P., Haines, B.B., Chen, J. & Sharp, P.A. Gene silencing using micro-RNA designed hairpins. RNA8, 842–850 (2002). ArticleCAS Google Scholar
Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev.16, 948–958 (2002). ArticleCAS Google Scholar
Paul, C.P., Good, P.D., Winer, I. & Engelke, D.R. Effective expression of small interfering RNA in human cells. Nat. Biotechnol.20, 505–508 (2002). ArticleCAS Google Scholar
Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA99, 5515–5520 (2002). ArticleCAS Google Scholar
Xia, H., Mao, Q., Paulson, H.L. & Davidson, B.L. siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol.20, 1006–1010 (2002). ArticleCAS Google Scholar
Yu, J.Y., DeRuiter, S.L. & Turner, D.L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA99, 6047–6052 (2002). ArticleCAS Google Scholar
Schaniel, C., Lee, D.F. & Lemischka, I.R. Exploration of self-renewal and pluripotency in ES cells using RNAi. Methods Enzymol.477, 351–365 (2010). ArticleCAS Google Scholar
Lu, R. et al. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature462, 358–362 (2009). ArticleCAS Google Scholar
Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell124, 1283–1298 (2006). ArticleCAS Google Scholar
Boheler, K.R. Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J. Cell Physiol.221, 10–17 (2009). ArticleCAS Google Scholar
Savatier, P., Huang, S., Szekely, L., Wiman, K.G. & Samarut, J. Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene9, 809–818 (1994). CASPubMed Google Scholar
Ting, D.T., Kyba, M. & Daley, G.Q. Inducible transgene expression in mouse stem cells. Methods Mol. Med.105, 23–46 (2005). CASPubMed Google Scholar
Macarthur, B.D., Ma′ayan, A. & Lemischka, I.R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol.10, 672–681 (2009). ArticleCAS Google Scholar
Lewis, D.L., Hagstrom, J.E., Loomis, A.G., Wolff, J.A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet.32, 107–108 (2002). ArticleCAS Google Scholar
Tam, P.P. & Rossant, J. Mouse embryonic chimeras: tools for studying mammalian development. Development130, 6155–6163 (2003). ArticleCAS Google Scholar
Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics26, 2438–2444 (2010). ArticleCAS Google Scholar
Schmittgen, T.D. & Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc.3, 1101–1108 (2008). ArticleCAS Google Scholar
Kutner, R.H., Zhang, X.Y. & Reiser, J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc.4, 495–505 (2009). ArticleCAS Google Scholar