The role of Notch in tumorigenesis: oncogene or tumour suppressor? (original) (raw)
Morgan, T. H. The theory of the gene. Am. Nat.51, 513–544 (1917). Article Google Scholar
Wharton, K. A. et al. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell43, 567–581 (1985). ArticleCASPubMed Google Scholar
Kidd, S., Kelley, M. R. & Young, M. W. Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol. Cell Biol.6, 3094–3108 (1986). References 2 and 3 are classic papers that describe the cloning of theDrosophila Notchgene. ArticleCASPubMedPubMed Central Google Scholar
Blaumueller, C. M. et al. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell90, 281–291 (1997). ArticleCASPubMed Google Scholar
Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA95, 8108–8112 (1998). ArticleCASPubMedPubMed Central Google Scholar
del Amo, F. F. et al. Cloning, analysis, and chromosomal localization of Notch-1, a mouse homolog of Drosophila Notch. Genomics15, 259–264 (1993). ArticleCASPubMed Google Scholar
Weinmaster, G., Roberts, V. J. & Lemke, G. Notch2: a second mammalian Notch gene. Development116, 931–941 (1992). CASPubMed Google Scholar
Lardelli, M. & Lendahl, U. Motch A and motch B: two mouse Notch homologues coexpressed in a wide variety of tissues. Exp. Cell Res.204, 364–372 (1993). ArticleCASPubMed Google Scholar
Lardelli, M., Dahlstrand, J. & Lendahl, U. The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech. Dev.46, 123–136 (1994). ArticleCASPubMed Google Scholar
Uyttendaele, H. et al. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development122, 2251–2259 (1996). CASPubMed Google Scholar
Bettenhausen, B. et al. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development121, 2407–2418 (1995). CASPubMed Google Scholar
Dunwoodie, S. L. et al. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development124, 3065–3076 (1997). CASPubMed Google Scholar
Shutter, J. R. et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev.14, 1313–1318 (2000). CASPubMedPubMed Central Google Scholar
Lindsell, C. E. et al. Jagged: a mammalian ligand that activates Notch1. Cell80, 909–917 (1995). ArticleCASPubMed Google Scholar
Shawber, C. et al. Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev. Biol.180, 370–376 (1996). ArticleCASPubMed Google Scholar
Kao, H. Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev.12, 2269–2277 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hsieh, J. J. et al. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc. Natl Acad. Sci. USA96, 23–28 (1999). ArticleCASPubMedPubMed Central Google Scholar
Morel, V. et al. Transcriptional repression by suppressor of hairless involves the binding of a hairless-dCtBP complex in Drosophila. Curr. Biol.11, 789–792 (2001). ArticleCASPubMed Google Scholar
Zhou, S. et al. SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC to facilitate NotchIC function. Mol. Cell Biol.20, 2400–2410 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kurooka, H. & Honjo, T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J. Biol. Chem.275, 17211–11720 (2000). ArticleCASPubMed Google Scholar
Fryer, C. J. et al. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev.16, 1397–1411 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bailey, A. M. & Posakony, J. W. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev.9, 2609–2622 (1995). ArticleCASPubMed Google Scholar
Davis, R. L. & Turner, D. L. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene20, 8342–8357 (2001). ArticleCASPubMed Google Scholar
Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J.20, 3427–3436 (2001). This report shows that NOTCH1 induces numerous early differentiation markers and identifies the gene that encodes WAF1 as a direct transcriptional target. ArticleCASPubMedPubMed Central Google Scholar
Panin, V. M. & Irvine, K. D. Modulators of Notch signaling. Semin. Cell Dev. Biol.9, 609–617 (1998). ArticleCASPubMed Google Scholar
Irvine, K. D. Fringe, Notch, and making developmental boundaries. Curr. Opin. Genet. Dev.9, 434–441 (1999). ArticleCASPubMed Google Scholar
Varnum-Finney, B. et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood91, 4084–4091 (1998). CASPubMed Google Scholar
Jaleco, A. C. et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med.194, 991–1002 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity17, 749–756 (2002). ArticleCASPubMed Google Scholar
Haltiwanger, R. S. & Stanley, P. Modulation of receptor signaling by glycosylation: fringe is an _O_-fucose-β1, 3-N-acetylglucosaminyltransferase. Biochim. Biophys. Acta1573, 328–335 (2002). ArticleCASPubMed Google Scholar
Martinez Arias, A., Zecchini, V. & Brennan, K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev.12, 524–533 (2002). ArticlePubMed Google Scholar
Lewis, J. Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol.6, 3–10 (1996). ArticleCASPubMed Google Scholar
Lewis, J. Notch signalling and the control of cell fate choices in vertebrates. Semin. Cell Dev. Biol.9, 583–589 (1998). ArticleCASPubMed Google Scholar
Chitnis, A. et al. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature375, 761–766 (1995). ArticleCASPubMed Google Scholar
Henrique, D. et al. Maintenance of neuroepithelial progenitor cells by Delta–Notch signalling in the embryonic chick retina. Curr. Biol.7, 661–670 (1997). ArticleCASPubMed Google Scholar
Jones, P. et al. Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells. Blood92, 1505–1511 (1998). CASPubMed Google Scholar
Kimble, J. & Simpson, P. The LIN-12/Notch signaling pathway and its regulation. Annu. Rev. Cell Dev. Biol.13, 333–361 (1997). ArticleCASPubMed Google Scholar
Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signaling. Science268, 225–232 (1995). ArticleCASPubMed Google Scholar
Morrison, S. J. et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell101, 499–510 (2000). ArticleCASPubMed Google Scholar
Lowell, S. et al. Stimulation of human epidermal differentiation by delta–notch signalling at the boundaries of stem-cell clusters. Curr. Biol.10, 491–500 (2000). ArticleCASPubMed Google Scholar
Reynolds, T. C., Smith, S. D. & Sklar, J. Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the beta T cell receptor gene in human lymphoblastic neoplasms. Cell50, 107–117 (1987). ArticleCASPubMed Google Scholar
Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell66, 649–661 (1991). This paper identified the first human homologue of theDrosophila Notchgene and its truncated form in the chromosomal translocation t(7;9)(q34;q34. 3) from a human T-lymphoblastic leukaemia. Furthermore, it is the first paper to indicate that aberrant expression of the cytoplasmic part of the humanNOTCH1gene causes T-cell neoplasm. ArticleCASPubMed Google Scholar
Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med.183, 2283–2291 (1996). This is the first report showing the oncogenic potential of the truncated humanNOTCH1gene in the haematopoietic compartment using a mouse model. ArticleCASPubMed Google Scholar
Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity11, 299–308 (1999). ArticleCASPubMed Google Scholar
Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity10, 547–558 (1999). ArticleCASPubMed Google Scholar
Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity16, 231–243 (2002). ArticleCASPubMed Google Scholar
Aster, J. C. et al. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol. Cell Biol.20, 7505–7015 (2000). ArticleCASPubMedPubMed Central Google Scholar
Girard, L. et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev.10, 1930–1944 (1996). ArticleCASPubMed Google Scholar
Feldman, B. J. Hampton, T. & Cleary, M. L. A carboxy-terminal deletion mutant of Notch1 accelerates lymphoid oncogenesis in E2A-PBX1 transgenic mice. Blood96, 1906–1913 (2000). CASPubMed Google Scholar
Beverly, L. J. & Capobianco, A. J. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell3, 551–564 (2003). ArticleCASPubMed Google Scholar
Allman, D. et al. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J. Exp. Med.194, 99–106 (2001). This report shows that aberrant Notch signalling in haematopoietic progenitors has to cooperate with a T-cell-specific signal (pre-TCR mediated signal) in order to cause T-cell neoplasms. ArticleCASPubMedPubMed Central Google Scholar
Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell87, 483–492 (1996). ArticleCASPubMed Google Scholar
Bellavia, D. et al. Constitutive activation of NF-κB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J.19, 3337–3348 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rohn, J. L. et al. Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. J. Virol.70, 8071–8080 (1996). CASPubMedPubMed Central Google Scholar
Yan, X. Q. et al. A novel Notch ligand, Dll4, induces T-cell leukemia/lymphoma when overexpressed in mice by retroviral-mediated gene transfer. Blood98, 3793–3799 (2001). ArticleCASPubMed Google Scholar
Dorsch, M. et al. Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood100, 2046–2055 (2002). CASPubMed Google Scholar
Weng, A. P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol. Cell Biol.23, 655–664 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gallahan, D. & Callahan, R. Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J. Virol.61, 66–74 (1987). CASPubMedPubMed Central Google Scholar
Gallahan, D. et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res.56, 1775–1785 (1996). CASPubMed Google Scholar
Jhappan, C. et al. Expression of an activated _Notch_-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev.6, 345–355 (1992). Shows that aberrant expression of theint3locus, which was later identifed as theNOTCH4gene (see also reference 9), can cause epithelial tumours. ArticleCASPubMed Google Scholar
Dievart, A., Beaulieu, N. & Jolicoeur, P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene18, 5973–5981 (1999). ArticleCASPubMed Google Scholar
Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nature Med.8, 979–986 (2002). Shows that the presence of NOTCH1 is not a consequence of cancer, but is instead required for the manifestation of cancer properties. ArticleCASPubMed Google Scholar
Zagouras, P. et al. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl Acad. Sci. USA92, 6414–6418 (1995). This is the first report that alluded to the involvement of Notch in carcinomas, specifically cervical cancers. ArticleCASPubMedPubMed Central Google Scholar
Milner, L. A. & Bigas, A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood93, 2431–2448 (1999). CASPubMed Google Scholar
Ronchini, C. & Capobianco, A. J. Notch(ic)-ER chimeras display hormone-dependent transformation, nuclear accumulation, phosphorylation and CBF1 activation. Oncogene19, 3914–3924 (2000). ArticleCASPubMed Google Scholar
Dumont, E. et al. Neoplastic transformation by Notch is independent of transcriptional activation by RBP-J signalling. Oncogene19, 556–561 (2000). ArticleCASPubMed Google Scholar
Jeffries, S. & Capobianco, A. J. Neoplastic transformation by Notch requires nuclear localization. Mol. Cell Biol.20, 3928–3941 (2000). ArticleCASPubMedPubMed Central Google Scholar
Imatani, A. & Callahan, R. Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene19, 223–231 (2000). ArticleCASPubMed Google Scholar
Capobianco, A. J. et al. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell Biol.17, 6265–6273 (1997). ArticleCASPubMedPubMed Central Google Scholar
Rangarajan, A. et al. Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt. Virology286, 23–30 (2001). ArticleCASPubMed Google Scholar
Fitzgerald, K., Harrington, A. & Leder, P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene19, 4191–4198 (2000). ArticleCASPubMed Google Scholar
Bocchetta, M. et al. Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene22, 81–89 (2003). ArticleCASPubMed Google Scholar
Chen, Y., Fischer, W. H. & Gill, G. N. Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J. Biol. Chem.272, 14110–14114 (1997). ArticleCASPubMed Google Scholar
Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol.124, 619–626 (1994). ArticleCASPubMed Google Scholar
Khwaja, A. et al. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J.16, 2783–2793 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yarden, Y. Biology of HER2 and its importance in breast cancer. Oncology61 (Suppl 2), 1–13 (2001). ArticleCASPubMed Google Scholar
Lin, A. & Karin, M. NF-κB in cancer: a marked target. Semin. Cancer Biol.13, 107–114 (2003). ArticleCASPubMed Google Scholar
Klein, G., Powers, A. & Croce, C. Association of SV40 with human tumors. Oncogene21, 1141–1149 (2002). ArticleCASPubMed Google Scholar
Shivapurkar, N. et al. Presence of simian virus 40 sequences in malignant mesotheliomas and mesothelial cell proliferations. J. Cell Biochem.76, 181–188 (1999). ArticleCASPubMed Google Scholar
Nickoloff, B. J. et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-κB and PPARγ. Cell Death Differ.9, 842–855 (2002). ArticleCASPubMed Google Scholar
Talora, C. et al. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev.16, 2252–2263 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chu, J. et al. Repression of activator protein-1-mediated transcriptional activation by the Notch-1 intracellular domain. J. Biol. Chem.277, 7587–7597 (2002). ArticleCASPubMed Google Scholar
Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet.33, 416–421 (2003). Shows that inactivation of Notch1 in the skin results in the development of basal-cell-carcinoma-like tumours due to downregulation of Waf1 and repression of Gli2-mediated Sonic hedgehog signalling and β-catenin-mediated Wnt signalling. ArticleCASPubMed Google Scholar
Topley, G. I. et al. p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc. Natl Acad. Sci. USA96, 9089–9094 (1999). ArticleCASPubMedPubMed Central Google Scholar
Weinberg, W. C. et al. Genetic deletion of p21WAF1 enhances papilloma formation but not malignant conversion in experimental mouse skin carcinogenesis. Cancer Res.59, 2050–2054 (1999). CASPubMed Google Scholar
Philipp, J. et al. Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis. Oncogene18, 4689–4698 (1999). ArticleCASPubMed Google Scholar
Thelu, J., Rossio, P. & Favier, B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol.2, 7 (2002). ArticlePubMedPubMed Central Google Scholar
Lo Muzio, L. et al. WNT-1 expression in basal cell carcinoma of head and neck. An immunohistochemical and confocal study with regard to the intracellular distribution of β-catenin. Anticancer Res.22, 565–576 (2002). CASPubMed Google Scholar
Yamazaki, F. et al. Immunohistochemical detection for nuclear β-catenin in sporadic basal cell carcinoma. Br. J. Dermatol.145, 771–777 (2001). ArticleCASPubMed Google Scholar
Boonchai, W. et al. Expression of β-catenin, a key mediator of the WNT signaling pathway, in basal cell carcinoma. Arch. Dermatol.136, 937–938 (2000). ArticleCASPubMed Google Scholar
Axelrod, J. D. et al. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science271, 1826–1832 (1996). ArticleCASPubMed Google Scholar
Borges, M. et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature386, 852–855 (1997). ArticleCASPubMed Google Scholar
Ito, T. et al. Basic helix–loop–helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development127, 3913–3921 (2000). CASPubMed Google Scholar
de la Pompa, J. L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development124, 1139–1148 (1997). CASPubMed Google Scholar
Ishibashi, M. et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix–loop–helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev.9, 3136–3148 (1995). ArticleCASPubMed Google Scholar
Sriuranpong, V. et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res.61, 3200–3205 (2001). CASPubMed Google Scholar
Field, J. K. & Spandidos, D. A. The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis. Anticancer Res.10, 1–22 (1990). CASPubMed Google Scholar
Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature304, 596–602 (1983). ArticleCASPubMed Google Scholar
Serrano, M. et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCASPubMed Google Scholar
Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell69, 119–128 (1992). The first report to show that an oncogene can induce apoptosis. This led to many subsequent reports that showed growth-suppressing properties of oncogenes. ArticleCASPubMed Google Scholar
Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol.189, 12–19 (1999). ArticleCASPubMed Google Scholar
Scheffner, M. et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell63, 1129–1136 (1990). ArticleCASPubMed Google Scholar
Dyson, N. et al. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science243, 934–937 (1989). ArticleCASPubMed Google Scholar
Munger, K. et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene20, 7888–7898 (2001). ArticleCASPubMed Google Scholar
Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature380, 79–82 (1996). ArticleCASPubMed Google Scholar
Daniel, B. et al. The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J. Gen. Virol.78, 1095–1101 (1997). ArticleCASPubMed Google Scholar
Helt, A. M., Funk, J. O. & Galloway, D. A. Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J. Virol.76, 10559–10568 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bedell, M. A., Jones, K. H. & Laimins, L. A. The E6-E7 region of human papillomavirus type 18 is sufficient for transformation of NIH 3T3 and rat-1 cells. J. Virol.61, 3635–3640 (1987). CASPubMedPubMed Central Google Scholar
Crook, T. et al. Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells co-transformed by HPV-16 plus EJ-ras. EMBO J.8, 513–519 (1989). ArticleCASPubMedPubMed Central Google Scholar
Yang, A. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell2, 305–316 (1998). ArticleCASPubMed Google Scholar
Heselmeyer, K. et al. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc. Natl Acad. Sci. USA93, 479–484 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wang, T. Y. et al. Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum. Pathol.32, 479–486 (2001). ArticleCASPubMed Google Scholar
Quade, B. J. et al. Expression of the p53 homologue p63 in early cervical neoplasia. Gynecol. Oncol.80, 24–29 (2001). ArticleCASPubMed Google Scholar
Sharma, M., Chuang, W. W. & Sun, Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J. Biol. Chem.277, 30935–30941 (2002). ArticleCASPubMed Google Scholar
Patturajan, M. et al. δNp63 induces β-catenin nuclear accumulation and signaling. Cancer Cell1, 369–379 (2002). ArticleCASPubMed Google Scholar
Price, M. A. & Kalderon, D. Proteolysis of the hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell108, 823–835 (2002). ArticleCASPubMed Google Scholar
Kalderon, D. Similarities between the Hedgehog and Wnt signaling pathways. Trends Cell Biol.12, 523–531 (2002). ArticleCASPubMed Google Scholar
Jia, J. et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature416, 548–552 (2002). ArticleCASPubMed Google Scholar
Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature400, 464–468 (1999). ArticleCASPubMed Google Scholar
Lathion, S., Schaper, J., Beard, P. & Raj, K. Notch1 can contribute to viral-induced transformation of primary human keratinocytes. Cancer Res. (in the press).
Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer2, 361–372 (2002). ArticleCAS Google Scholar