Mechanisms of B-cell lymphoma pathogenesis (original) (raw)
Fisher, S. G. & Fisher, R. I. The epidemiology of non-Hodgkin's lymphoma. Oncogene23, 6524–6534 (2004). ArticleCASPubMed Google Scholar
Jaffe, E. S., Harris, N. L., Stein, H. & Vardiman, J. W. World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Hematopoietic and Lymphoid Tissues (eds Kleihuis, P. & Sobin, L.) (IARC, Lyon, 2001). Google Scholar
Rajewsky, K. Clonal selection and learning in the antibody system. Nature381, 751–758 (1996). ArticleCASPubMed Google Scholar
Küppers, R., Klein, U., Hansmann, M. -L. & Rajewsky, K. Cellular origin of human B-cell lymphomas. N. Engl. J. Med.341, 1520–1529 (1999). ArticlePubMed Google Scholar
Stevenson, F. K. et al. The occurrence and significance of V gene mutations in B cell-derived human malignancy. Adv. Cancer Res.83, 81–116 (2001). ArticleCASPubMed Google Scholar
Greaves, M. F. Differentiation-linked leukemogenesis in lymphocytes. Science234, 697–704 (1986). ArticleCASPubMed Google Scholar
Shaffer, A. L., Rosenwald, A. & Staudt, L. M. Lymphoid malignancies: the dark side of B-cell differentiation. Nature Rev. Immunol.2, 920–932 (2002). ArticleCAS Google Scholar
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000). Showed that distinct subsets of diffuse large B-cell lymphoma can be identifed by large-scale gene-expression profiling. ArticleCASPubMed Google Scholar
Klein, U. et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med.194, 1625–1638 (2001). ArticleCASPubMedPubMed Central Google Scholar
Küppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene20, 5580–5594 (2001). ArticlePubMed Google Scholar
Willis, T. G. & Dyer, M. J. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood96, 808–822 (2000). ArticleCASPubMed Google Scholar
Jäger, U. et al. Follicular lymphomas' BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood95, 3520–3529 (2000). ArticlePubMed Google Scholar
Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce, C. M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science229, 1390–1393 (1985). ArticleCASPubMed Google Scholar
Tsujimoto, Y., Louie, E., Bashir, M. M. & Croce, C. M. The reciprocal partners of both the t(14; 18) and the t(11; 14) translocations involved in B-cell neoplasms are rearranged by the same mechanism. Oncogene2, 347–351 (1988). CASPubMed Google Scholar
Goossens, T., Klein, U. & Küppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl Acad. Sci. USA95, 2463–2468 (1998). CASPubMedPubMed Central Google Scholar
Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity13, 589–597 (2000). ArticleCASPubMed Google Scholar
Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature408, 216–221 (2000). ArticleCASPubMed Google Scholar
Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature412, 341–346 (2001). Showed that multiple proto-oncogenes are targeted by somatic hypermutation specifically in diffuse large B-cell lymphomas, which could have a major role in the pathogenesis of this lymphoma. ArticleCASPubMed Google Scholar
Raghavan, S. C., Swanson, P. C., Wu, X., Hsieh, C. L. & Lieber, M. R. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature428, 88–93 (2004). ArticleCASPubMed Google Scholar
Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell94, 463–470 (1998). ArticleCASPubMed Google Scholar
Roth, D. B. & Craig, N. L. VDJ recombination: a transposase goes to work. Cell94, 411–414 (1998). ArticleCASPubMed Google Scholar
Müschen, M. et al. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J. Exp. Med.192, 1833–1840. (2000). ArticlePubMedPubMed Central Google Scholar
Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA95, 11816–11821 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science280, 1750–1752 (1998). ArticleCASPubMed Google Scholar
Gronbaek, K. et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood92, 3018–3024 (1998). ArticleCASPubMed Google Scholar
Esser, C. & Radbruch, A. Immunoglobulin class switching: molecular and cellular analysis. Annu. Rev. Immunol.8, 717–735 (1990). ArticleCASPubMed Google Scholar
Küppers, R. B cells under influence: transformation of B cells by Epstein–Barr virus. Nature Rev. Immunol3, 801–812 (2003). ArticleCAS Google Scholar
Rickinson, A. B. & Kieff, E. Epstein–Barr virus. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2575–2627 (Lippincott-Raven, Philadelphia, 2001). Google Scholar
Thorley-Lawson, D. A. & Gross, A. Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N. Engl. J. Med.350, 1328–1337 (2004). ArticleCASPubMed Google Scholar
Young, L. S. & Rickinson, A. B. Epstein–Barr virus: 40 years on. Nature Rev. Cancer4, 757–768 (2004). ArticleCAS Google Scholar
Cannon, M. & Cesarman, E. Kaposi's sarcoma-associated herpes virus and acquired immunodeficiency syndrome-related malignancy. Semin. Oncol.27, 409–419 (2000). CASPubMed Google Scholar
Guasparri, I., Keller, S. A. & Cesarman, E. KSHV vFLIP is essential for the survival of infected lymphoma cells. J. Exp. Med.199, 993–1003 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell117, 787–800 (2004). ArticleCASPubMed Google Scholar
Lam, K. P., Kühn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell90, 1073–1083 (1997). In references 33 and 34 mouse models were generated that provided strong evidence that normal mature B cells strictly depend on BCR expression and signalling for survival. ArticleCASPubMed Google Scholar
Gunven, P., Klein, G., Klein, E., Norin, T. & Singh, S. Surface immunoglobulins on Burkitt's lymphoma biopsy cells from 91 patients. Int. J. Cancer25, 711–719 (1980). ArticleCASPubMed Google Scholar
Segal, G. H. et al. Concomitant delineation of surface Ig, B-cell differentiation antigens, and HLADR on lymphoid proliferations using three-color immunocytometry. Cytometry12, 350–359 (1991). ArticleCASPubMed Google Scholar
Yano, T. et al. Histogenetic correlations between subcategories of small noncleaved cell lymphomas. Blood79, 1282–1290 (1992). ArticleCASPubMed Google Scholar
de Jong, D. et al. Translocation t(14;18) in B cell lymphomas as a cause for defective immunoglobulin production. J. Exp. Med.169, 613–624 (1989). ArticleCASPubMed Google Scholar
Cleary, M. L. et al. Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B cell lymphoma. Cell44, 97–106 (1986). ArticleCASPubMed Google Scholar
Meeker, T. et al. Emergence of idiotype variants during treatment of B-cell lymphoma with anti-idiotype antibodies. N. Engl. J. Med.312, 1658–1665 (1985). ArticleCASPubMed Google Scholar
Braeuninger, A. et al. Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc. Natl Acad. Sci. USA94, 9337–9342 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chapman, C. J., Mockridge, C. I., Rowe, M., Rickinson, A. B. & Stevenson, F. K. Analysis of VH genes used by neoplastic B cells in endemic Burkitt's lymphoma shows somatic hypermutation and intraclonal heterogeneity. Blood85, 2176–2181 (1995). ArticleCASPubMed Google Scholar
Lossos, I. S. et al. Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc. Natl Acad. Sci. USA97, 10209–10213 (2000). ArticleCASPubMedPubMed Central Google Scholar
Thompsett, A. R., Ellison, D. W., Stevenson, F. K. & Zhu, D. V(H) gene sequences from primary central nervous system lymphomas indicate derivation from highly mutated germinal center B cells with ongoing mutational activity. Blood94, 1738–1746 (1999). ArticleCASPubMed Google Scholar
Klein, U. et al. Somatic hypermutation in normal and transformed human B cells. Immunol. Rev.162, 261–280 (1998). ArticleCASPubMed Google Scholar
Kanzler, H., Küppers, R., Hansmann, M. L. & Rajewsky, K. Hodgkin and Reed–Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med.184, 1495–1505 (1996). This study provided the first evidence that the tumour cells in Hodgkin's lymphoma are derived from 'crippled', BCR-deficient GC B cells ArticleCASPubMed Google Scholar
Küppers, R. Molecular biology of Hodgkin's lymphoma. Adv. Cancer Res.84, 277–312 (2002). ArticlePubMed Google Scholar
Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity9, 405–411 (1998). ArticleCASPubMed Google Scholar
Casola, S. et al. B cell receptor signal strength determines B cell fate. Nature Immunol.5, 317–327 (2004). References 48 and 49 show that the EBV-encodedLMP2Acan replace the function of the BCR in murine B cells. ArticleCAS Google Scholar
Schwering, I. et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood101, 1505–1512 (2003). ArticleCASPubMed Google Scholar
Engels, N. et al. Epstein–Barr virus latent membrane protein 2A (LMP2A) employs the SLP-65 signaling module. J. Exp. Med.194, 255–264 (2001). ArticleCASPubMedPubMed Central Google Scholar
Merchant, M., Caldwell, R. G. & Longnecker, R. The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo. J. Virol.74, 9115–9124 (2000). ArticleCASPubMedPubMed Central Google Scholar
Re, D. et al. Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res.61, 2080–2084 (2001). CASPubMed Google Scholar
Stein, H. et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood97, 496–501 (2001). ArticleCASPubMed Google Scholar
Bräuninger, A. et al. Epstein–Barr virus (EBV)-positive lymphoproliferations in posttransplant patients show immunoglobulin V gene mutation patterns suggesting interference of EBV with normal B cell differentiation processes. Eur. J. Immunol.33, 1593–1602 (2003). ArticlePubMedCAS Google Scholar
Capello, D. et al. Molecular histogenesis of posttransplant lymphoproliferative disorders. Blood102, 3775–3785 (2003). ArticleCASPubMed Google Scholar
Timms, J. M. et al. Target cells of Epstein–Barr-virus (EBV)-positive post-transplant lymphoproliferative disease: similarities to EBV-positive Hodgkin's lymphoma. Lancet361, 217–223 (2003). ArticlePubMed Google Scholar
Leithäuser, F., Bäuerle, M., Huynh, M. Q. & Möller, P. Isotype-switched immunoglobulin genes with a high load of somatic hypermutation and lack of ongoing mutational activity are prevalent in mediastinal B-cell lymphoma. Blood98, 2762–2770 (2001). ArticlePubMed Google Scholar
Pileri, S. A. et al. Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. Am. J. Pathol.162, 243–253 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ritz, O. et al. Downregulation of internal enhancer activity contributes to abnormally low immunoglobulin expression in the MedB-1 mediastinal B-cell lymphoma cell line. J. Pathol.205, 336–348 (2005). ArticleCASPubMed Google Scholar
Rosenwald, A. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med.198, 851–862 (2003). ArticleCASPubMedPubMed Central Google Scholar
Savage, K. J. et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood102, 3871–3879 (2003). ArticleCASPubMed Google Scholar
Fais, F. et al. Immunoglobulin V region gene use and structure suggest antigen selection in AIDS-related primary effusion lymphomas. Leukemia13, 1093–1099 (1999). ArticleCASPubMed Google Scholar
Gaidano, G. & Carbone, A. Primary effusion lymphoma: a liquid phase lymphoma of fluid-filled body cavities. Adv. Cancer Res.80, 115–146 (2001). ArticleCASPubMed Google Scholar
Matolcsy, A., Nador, R. G., Cesarman, E. & Knowles, D. M. Immunoglobulin VH gene mutational analysis suggests that primary effusion lymphomas derive from different stages of B cell maturation. Am. J. Pathol.153, 1609–1614 (1998). ArticleCASPubMedPubMed Central Google Scholar
Arguello, M. et al. Disruption of the B-cell specific transcriptional program in HHV-8 associated primary effusion lymphoma cell lines. Oncogene22, 964–973 (2003). ArticleCASPubMed Google Scholar
Klein, U. et al. Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood101, 4115–4121 (2003). ArticleCASPubMed Google Scholar
Daneshek, W. & Schwartz, R. S. Leukemia and auto-immunization- some possible relationships. Blood14, 1151–1158 (1959). Article Google Scholar
Borche, L., Lim, A., Binet, J. L. & Dighiero, G. Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies. Blood76, 562–569 (1990). ArticleCASPubMed Google Scholar
Sthoeger, Z. M. et al. Production of autoantibodies by CD5-expressing B lymphocytes from patients with chronic lymphocytic leukemia. J. Exp. Med.169, 255–268 (1989). ArticleCASPubMed Google Scholar
Mann, D. L. et al. HTLV-I-associated B-cell CLL: indirect role for retrovirus in leukemogenesis. Science236, 1103–1106 (1987). ArticleCASPubMed Google Scholar
Fais, F. et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J. Clin. Invest.102, 1515–1525 (1998). References 72–75 show that B-CLL includes groups of cases with highly restricted BCR diversity, indicating a role of a set of common, restricted (auto)antigens in activating the lymphoma cells and/or their precursors. ArticleCASPubMedPubMed Central Google Scholar
Ghiotto, F. et al. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J. Clin. Invest.113, 1008–1016 (2004). ArticleCASPubMedPubMed Central Google Scholar
Messmer, B. T. et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J. Exp. Med.200, 519–525 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tobin, G. et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vλ2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood101, 4952–4957 (2003). ArticleCASPubMed Google Scholar
Damle, R. N. et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood99, 4087–4093 (2002). ArticleCASPubMed Google Scholar
Montesinos-Rongen, M. et al. Primary central nervous system lymphomas are derived from germinal-center B cells and show a preferential usage of the V4-34 gene segment. Am. J. Pathol.155, 2077–2086 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dighiero, G. et al. Autoantibody activity of immunoglobulins isolated from B-cell follicular lymphomas. Blood78, 581–585 (1991). ArticleCASPubMed Google Scholar
Bahler, D. W. & Levy, R. Clonal evolution of a follicular lymphoma: evidence for antigen selection. Proc. Natl Acad. Sci. USA89, 6770–6774 (1992). ArticleCASPubMedPubMed Central Google Scholar
Zhu, D. et al. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood99, 2562–2568 (2002). ArticleCASPubMed Google Scholar
Zhu, D., Ottensmeier, C. H., Du, M. Q., McCarthy, H. & Stevenson, F. K. Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt's lymphoma and mucosa-associated lymphoid tissue lymphoma. Br. J. Haematol.120, 217–222 (2003). ArticleCASPubMed Google Scholar
Quinn, E. R. et al. The B-cell receptor of a hepatitis C virus (HCV)-associated non-Hodgkin lymphoma binds the viral E2 envelope protein, implicating HCV in lymphomagenesis. Blood98, 3745–3749 (2001). ArticleCASPubMed Google Scholar
Hermine, O. et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N. Engl. J. Med.347, 89–94 (2002). ArticleCASPubMed Google Scholar
Wotherspoon, A. C. et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue after eradication of Helicobacter pylori. Lancet342, 575–577 (1993). ArticleCASPubMed Google Scholar
Hussel, T., Isaacson, P. G., Crabtree, J. E. & Spencer, J. _Helicobacter pylori_-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J. Pathol.178, 122–127 (1996). References 83–85 provide evidence that the growth of lymphoma cells might depend on chronic infection of the patients by bacteria or viruses. Article Google Scholar
Greiner, A. et al. Idiotype identity in a MALT-type lymphoma and B cells in Helicobacter pylori associated chronic gastritis. Lab. Invest.70, 572–578 (1994). CASPubMed Google Scholar
Hussell, T., Isaacson, P. G., Crabtree, J. E., Dogan, A. & Spencer, J. Immunoglobulin specificity of low grade B cell gastrointestinal lymphoma of mucosa-associated lymphoid tissue (MALT) type. Am. J. Pathol.142, 285–292 (1993). CASPubMedPubMed Central Google Scholar
Bende, R. J. et al. Immunoglobulins of B-cell non Hodgkin's lymphomas: musosa-associated lymphoid tissue lymphomas express a distinctive repertoire with frequent rheumatoid factor reactivity. J. Exp. Med.201, (in the press).
Dogan, A. et al. Follicular lymphomas contain a clonally linked but phenotypically distinct neoplastic B-cell population in the interfollicular zone. Blood91, 4708–4714 (1998). ArticleCASPubMed Google Scholar
Johnson, P. W. et al. Isolated follicular lymphoma cells are resistant to apoptosis and can be grown in vitro in the CD40/stromal cell system. Blood82, 1848–1857 (1993). ArticleCASPubMed Google Scholar
Umetsu, D. T., Esserman, L., Donlon, T. A., DeKruyff, R. H. & Levy, R. Induction of proliferation of human follicular (B type) lymphoma cells by cognate interaction with CD4+ T cell clones. J. Immunol.144, 2550–2557 (1990). CASPubMed Google Scholar
Dave, S. S. et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med.351, 2159–2169 (2004). ArticleCASPubMed Google Scholar
Schmid, C. & Isaacson, P. G. Proliferation centres in B-cell malignant lymphoma, lymphocytic (B-CLL): an immunophenotypic study. Histopathol.24, 445–451 (1994). ArticleCAS Google Scholar
Buske, C. et al. Stimulation of B-chronic lymphocytic leukemia cells by murine fibroblasts, IL-4, anti-CD40 antibodies, and the soluble CD40 ligand. Exp. Hematol.25, 329–337 (1997). CASPubMed Google Scholar
Fluckiger, A. C. et al. Responsiveness of chronic lymphocytic leukemia B cells activated via surface Igs or CD40 to B-cell tropic factors. Blood80, 3173–3181 (1992). ArticleCASPubMed Google Scholar
Ghia, P. et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur. J. Immunol.32, 1403–1413 (2002). ArticleCASPubMed Google Scholar
van den Berg, A., Visser, L. & Poppema, S. High expression of the CC chemokine TARC in Reed–Sternberg cells. A possible explanation for the characteristic T-cell infiltration Hodgkin's lymphoma. Am. J. Pathol.154, 1685–1691 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ehrenfeld, M., Abu-Shakra, M., Buskila, D. & Shoenfeld, Y. The dual association between lymphoma and autoimmunity. Blood Cells Mol. Dis.27, 750–756 (2001). ArticleCASPubMed Google Scholar
Straus, S. E. et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood98, 194–200. (2001). ArticleCASPubMed Google Scholar
Martin, T. et al. Salivary gland lymphomas in patients with Sjogren's syndrome may frequently develop from rheumatoid factor B cells. Arthritis Rheum.43, 908–916 (2000). ArticleCASPubMed Google Scholar
Davis, R. E., Brown, K. D., Siebenlist, U. & Staudt, L. M. Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med.194, 1861–1874 (2001). ArticleCASPubMedPubMed Central Google Scholar
Küppers, R., Zhao, M., Hansmann, M. L. & Rajewsky, K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J.12, 4955–4967 (1993). ArticlePubMedPubMed Central Google Scholar
Liu, Y. J. et al. Sequential triggering of apoptosis, somatic mutation and isotype switch during germinal center development. Semin. Immunol.8, 169–177 (1996). ArticleCASPubMed Google Scholar
Dogan, A. & Isaacson, P. G. Splenic marginal zone lymphoma. Semin. Diagn. Pathol.20, 121–127 (2003). ArticlePubMed Google Scholar
Chiorazzi, N. & Ferrarini, M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu. Rev. Immunol.21, 841–894 (2003). ArticleCASPubMed Google Scholar
Vaandrager, J. W. et al. Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization. Blood88, 1177–1182 (1996). ArticleCASPubMed Google Scholar
Camacho, E. et al. ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances. Blood99, 238–244 (2002). ArticleCASPubMed Google Scholar
Schaffner, C., Idler, I., Stilgenbauer, S., Döhner, H. & Lichter, P. Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc. Natl Acad. Sci. USA97, 2773–2778 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cuneo, A. et al. 13q14 deletion in non-Hodgkin's lymphoma: correlation with clinicopathologic features. Haematologica.84, 589–593 (1999). CASPubMed Google Scholar
Schaffner, C., Stilgenbauer, S., Rappold, G. A., Döhner, H. & Lichter, P. Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood94, 748–753 (1999). ArticleCASPubMed Google Scholar
Stankovic, T. et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet353, 26–29 (1999). ArticleCASPubMed Google Scholar
Gaidano, G. et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA88, 5413–5417 (1991). ArticleCASPubMedPubMed Central Google Scholar
Baron, B. W. et al. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc. Natl Acad. Sci. USA90, 5262–5266 (1993). ArticleCASPubMedPubMed Central Google Scholar
Ye, B. H., Rao, P. H., Chaganti, R. S. & Dalla-Favera, R. Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. Cancer Res.53, 2732–2735 (1993). CASPubMed Google Scholar
Weiss, L. M., Warnke, R. A., Sklar, J. & Cleary, M. L. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N. Engl. J. Med.317, 1185–1189 (1987). ArticleCASPubMed Google Scholar
Ladanyi, M., Offit, K., Jhanwar, S. C., Filippa, D. A. & Chaganti, R. S. MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. Blood77, 1057–1063 (1991). ArticleCASPubMed Google Scholar
Gronbaek, K. et al. ATM mutations are associated with inactivation of the ARF–TP53 tumor suppressor pathway in diffuse large B-cell lymphoma. Blood100, 1430–1437 (2002). ArticleCASPubMed Google Scholar
Koduru, P. R. et al. Correlation between mutation in p53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin's lymphoma. Blood90, 4078–4091 (1997). ArticleCASPubMed Google Scholar
Moller, M. B. et al. Aberrations of the p53 pathway components p53, MDM2 and CDKN2A appear independent in diffuse large B cell lymphoma. Leukemia13, 453–459 (1999). ArticleCASPubMed Google Scholar
Melzner, I. et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in MedB-1 mediastinal lymphoma line. Blood105, 2535–2542 (2004). ArticlePubMedCAS Google Scholar
Rossi, D. et al. Aberrant somatic hypermutation in primary mediastinal large B-cell lymphoma. Blood104, A2268 (2004). Article Google Scholar
Dalla-Favera, R., Martinotti, S., Gallo, R. C., Erikson, J. & Croce, C. M. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science219, 963–967 (1983). ArticleCASPubMed Google Scholar
Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl Acad. Sci. USA79, 7837–7841 (1982). ArticleCASPubMedPubMed Central Google Scholar
Cinti, C. et al. Genetic alterations of the retinoblastoma-related gene RB2/p130 identify different pathogenetic mechanisms in and among Burkitt's lymphoma subtypes. Am. J. Pathol.156, 751–760 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cabannes, E., Khan, G., Aillet, F., Jarrett, R. F. & Hay, R. T. Mutations in the IκBα gene in Hodgkin's disease suggest a tumour suppressor role for IκBα. Oncogene18, 3063–3070 (1999). ArticleCASPubMed Google Scholar
Krappmann, D. et al. Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed–Sternberg cells. Oncogene18, 943–953 (1999). ArticleCASPubMed Google Scholar
Jungnickel, B. et al. Clonal deleterious mutations in the iκBα gene in the malignant cells in Hodgkin's disease. J. Exp. Med.191, 395–401 (2000). ArticleCASPubMedPubMed Central Google Scholar
Emmerich, F. et al. Inactivating IκBε mutations in Hodgkin/Reed–Sternberg cells. J. Pathol.201, 413–420 (2003). ArticleCASPubMed Google Scholar
Müschen, M. et al. Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells. Cancer Res.60, 5640–5643 (2000). PubMed Google Scholar
Martin-Subero, J. I. et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood99, 1474–1477 (2002). ArticleCASPubMed Google Scholar
Wlodarska, I. et al. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood101, 706–710 (2003). ArticleCASPubMed Google Scholar
Dierlamm, J. et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood93, 3601–3609 (1999). ArticleCASPubMed Google Scholar
Willis, T. G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell96, 35–45 (1999). ArticleCASPubMed Google Scholar
Zhang, Q. et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nature Genet.22, 63–68 (1999). ArticleCASPubMed Google Scholar
Streubel, B. et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood101, 2335–2339 (2003). ArticleCASPubMed Google Scholar
Streubel, B., Vinatzer, U., Lamprecht, A., Raderer, M. & Chott, A. T(3;14)(p14. 1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 10 Feb 2005 (10.1038/sj.leu.2403644).
Bertoni, F. et al. Lack of CD95/FAS gene somatic mutations in extranodal, nodal and splenic marginal zone B cell lymphomas. Leukemia14, 446–448 (2000). ArticleCASPubMed Google Scholar
Seeberger, H. et al. Loss of Fas (CD95/APO-1) regulatory function is an important step in early MALT-type lymphoma development. Lab. Invest.81, 977–986 (2001). ArticleCASPubMed Google Scholar
Iida, S. et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood88, 4110–4117 (1996). ArticleCASPubMed Google Scholar
Nador, R. G. et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood88, 645–656 (1996). ArticleCASPubMed Google Scholar
Avet-Loiseau, H. et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. Cancer Res.58, 5640–5645 (1998). CASPubMed Google Scholar
Chesi, M. et al. Frequent translocation t(4;14)(p16. 3;q32. 3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nature Genet.16, 260–264 (1997). ArticleCASPubMed Google Scholar
Chesi, M. et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood91, 4457–4463 (1998). ArticleCASPubMed Google Scholar
Landowski, T. H., Qu, N., Buyuksal, I., Painter, J. S. & Dalton, W. S. Mutations in the Fas antigen in patients with multiple myeloma. Blood90, 4266–4270 (1997). ArticleCASPubMed Google Scholar
Shou, Y. et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc. Natl Acad. Sci. USA97, 228–233 (2000). ArticleCASPubMedPubMed Central Google Scholar
Liu, P. et al. Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. Blood88, 2699–2706 (1996). ArticleCASPubMed Google Scholar
Kuehl, W. M. & Bergsagel, P. L. Multiple myeloma: evolving genetic events and host interactions. Nature Rev. Cancer2, 175–187 (2002). ArticleCAS Google Scholar