Nuclear microenvironments in biological control and cancer (original) (raw)
Drobic, B., Dunn, K. L., Espino, P. S. & Davie, J. R. Abnormalities of chromatin in tumor cells. EXS96, 25–47 (2006). CAS Google Scholar
Kopp, K. & Huang, S. Perinucleolar compartment and transformation. J. Cell Biochem.95, 217–225 (2005). ArticleCASPubMed Google Scholar
Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nature Rev. Cancer4, 677–687 (2004). ArticleCAS Google Scholar
Leonhardt, H. & Cardoso, M. C. DNA methylation, nuclear structure, gene expression and cancer. J. Cell Biochem. Suppl.35, 78–83 (2000). ArticlePubMed Google Scholar
Singh, H., Sekinger, E. A. & Gross, D. S. Chromatin and cancer: causes and consequences. J. Cell Biochem. Suppl.35, 61–68 (2000). ArticlePubMed Google Scholar
Stein, G. S., Montecino, M., van Wijnen, A. J., Stein, J. L. & Lian, J. B. Nuclear structure- gene expression interrelationships: implications for aberrant gene expression in cancer. Cancer Res.60, 2067–2076 (2000). CASPubMed Google Scholar
Konety, B. R. & Getzenberg, R. H. Nuclear structural proteins as biomarkers of cancer. J. Cell Biochem. Suppl.32–33, 183–191 (1999). Article Google Scholar
Bissell, M. J. et al. Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res.59, 1757–1763s (1999). CASPubMed Google Scholar
Nicolini, C. Nuclear structure and higher order gene structure: their role in the control of chemically-induced neoplastic transformation. Toxicol. Pathol.12, 149–154 (1984). ArticleCASPubMed Google Scholar
Gauwerky, C. E. & Croce, C. M. Chromosomal translocations in leukaemia. Semin. Cancer Biol.4, 333–340 (1993). CASPubMed Google Scholar
Cremer, T. et al. Chromosome territories-a functional nuclear landscape. Curr. Opin. Cell Biol.18, 307–316 (2006). ArticleCASPubMed Google Scholar
Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet.34, 287–291 (2003). Using immunofluorescence microscopy, the authors show that the proximity of chromosomal territories carrying translocation-prone gene loci perhaps contributes to chromosomal translocations. ArticleCASPubMed Google Scholar
Parada, L. & Misteli, T. Chromosome positioning in the interphase nucleus. Trends Cell Biol.12, 425–432 (2002). ArticleCASPubMed Google Scholar
Carrozza, M. J., Utley, R. T., Workman, J. L. & Cote, J. The diverse functions of histone acetyltransferase complexes. Trends Genet.19, 321–329 (2003). ArticleCASPubMed Google Scholar
Coffey, D. S., Getzenberg, R. H. & DeWeese, T. L. Hyperthermic biology and cancer therapies: a hypothesis for the 'Lance Armstrong effect'. JAMA296, 445–448 (2006). ArticleCASPubMed Google Scholar
DeFranco, D. B. Navigating steroid hormone receptors through the nuclear compartment. Mol. Endocrinol.16, 1449–1455 (2002). ArticleCASPubMed Google Scholar
Isogai, Y. & Tjian, R. Targeting genes and transcription factors to segregated nuclear compartments. Curr. Opin. Cell Biol.15, 296–303 (2003). ArticleCASPubMed Google Scholar
Taatjes, D. J., Marr, M. T. & Tjian, R. Regulatory diversity among metazoan co-activator complexes. Nature Rev. Mol. Cell Biol.5, 403–410 (2004). ArticleCAS Google Scholar
Misteli, T. Spatial positioning; a new dimension in genome function. Cell119, 153–156 (2004). ArticleCASPubMed Google Scholar
Handwerger, K. E. & Gall, J. G. Subnuclear organelles: new insights into form and function. Trends Cell Biol.16, 19–26 (2006). ArticleCASPubMed Google Scholar
Fischer, A. H., Bardarov, S. Jr & Jiang, Z. Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J. Cell Biochem.91, 170–184 (2004). ArticleCASPubMed Google Scholar
Rowley, J. D. The role of chromosome translocations in leukemogenesis. Semin. Hematol.36, 59–72 (1999). CASPubMed Google Scholar
Stein, G. S. et al. Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol.13, 584–592 (2003). ArticleCASPubMed Google Scholar
Verschure, P. J., van Der Kraan, I., Manders, E. M. & van Driel, R. Spatial relationship between transcription sites and chromosome territories. J. Cell Biol.147, 13–24 (1999). ArticleCASPubMedPubMed Central Google Scholar
Htun, H., Barsony, J., Renyi, I., Gould, D. L. & Hager, G. L. Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc. Natl Acad. Sci. USA93, 4845–4850 (1996). This study shows thein vivodynamics of a steroid hormone receptor in response to ligand activation. ArticleCASPubMedPubMed Central Google Scholar
Leonhardt, H., Rahn, H. P. & Cardoso, M. C. Intranuclear targeting of DNA replication factors. J. Cell Biochem. Suppl.30–31, 243–249 (1998). ArticlePubMed Google Scholar
Wei, X. et al. Segregation of transcription and replication sites into higher order domains. Science281, 1502–1505 (1998). This study shows that individual sites of DNA replication and transcription of mammalian nuclei segregate into distinct sets of higher order domains with a distinct network-like appearance. These data support a dynamic mosaic model for the higher order arrangement of genomic function inside cell nuclei. ArticleCASPubMed Google Scholar
Zeng, C. et al. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBFα transcription factors. Proc. Natl Acad. Sci. USA94, 6746–6751 (1997). The authors identify the first nuclear matrix-targeting signal in a transcription factor. This is the first study to demonstrate a mechanism to target regulatory proteins to specific sites within the mammalian nucleus. ArticleCASPubMedPubMed Central Google Scholar
Zaidi, S. K. et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J.23, 790–799 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stenoien, D. L. et al. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor α-coactivator complexes in living cells. Mol. Cell Biol.21, 4404–4412 (2001). ArticleCASPubMedPubMed Central Google Scholar
Young, D. W. et al. Quantitative signature for architectural organization of regulatory factors using intranuclear informatics. J. Cell Sci.117, 4889–4896 (2004). This study describes the development of a mathematical algorithm, designated intranuclear informatics, to quantitatively assess subnuclear localization of regulatory proteins. ArticleCASPubMed Google Scholar
Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol.1, 20–26 (1999). The authors show that ARF binds to MDM2 and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by MDM2 and leading to the activation of p53 in the nucleoplasm. ArticleCASPubMed Google Scholar
Chene, P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nature Rev. Cancer3, 102–109 (2003). ArticleCAS Google Scholar
Wsierska-Gadek, J. & Horky, M. How the nucleolar sequestration of p53 protein or its interplayers contributes to its (re)-activation. Ann. N. Y. Acad. Sci.1010, 266–272 (2003). ArticlePubMedCAS Google Scholar
Tu, X. et al. Nuclear translocation of insulin receptor substrate-1 by oncogenes and Igf-I. Effect on ribosomal RNA synthesis. J. Biol. Chem.277, 44357–44365 (2002). ArticleCASPubMed Google Scholar
Dang, C. V. & Lee, W. M. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J. Biol. Chem.264, 18019–18023 (1989). CASPubMed Google Scholar
Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol.7, 311–318 (2005). References 43 and 44 show the upregulation of ribosomal RNA genes by theMYConcogene, thus providing mechanistic links between tumorigenesis and protein synthesis. ArticleCASPubMed Google Scholar
Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol.7, 303–310 (2005). ArticleCASPubMed Google Scholar
Grisendi, S. et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature437, 147–153 (2005). ArticleCASPubMed Google Scholar
Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer3, 179–192 (2003). ArticleCAS Google Scholar
Hernandez-Verdun, D. The nucleolus: a model for the organization of nuclear functions. Histochem. Cell Biol.126, 135–148 (2006). ArticleCASPubMed Google Scholar
Young, D. W. et al. Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature445, 442–446 (2007). This article reports the regulation of ribosomal RNA genes by a transcription factor required for lineage commitment, thus providing a mechanistic link between the regulation of cell fate, growth control and phenotype. ArticleCASPubMed Google Scholar
Galindo, M. et al. The bone-specific expression of RUNX2 oscillates during the cell cycle to support a G1 related anti-proliferative function in osteoblasts. J. Biol. Chem.280, 20274–20285 (2005). ArticleCASPubMed Google Scholar
Pratap, J. et al. Cell growth regulatory role of Runx2 during proliferative expansion of pre-osteoblasts. J. Bone Miner. Res.17, (Suppl. 1), S151 (2002). Google Scholar
Strom, D. K. et al. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. J. Biol. Chem.275, 3438–3445 (2000). ArticleCASPubMed Google Scholar
Speck, N. A. & Gilliland, D. G. Core-binding factors in haematopoiesis and leukaemia. Nature Rev. Cancer2, 502–513 (2002). ArticleCAS Google Scholar
Barseguian, K. et al. Multiple subnuclear targeting signals of the leukemia-related AML1/ETO and ETO repressor proteins. Proc. Natl Acad. Sci. USA99, 15434–15439 (2002). ArticleCASPubMedPubMed Central Google Scholar
McNeil, S. et al. The t(8;21) chromosomal translocation in acute myelogenous leukemia modifies intranuclear targeting of the AML1/CBFα2 transcription factor. Proc. Natl Acad. Sci. USA96, 14882–14887 (1999). ArticleCASPubMedPubMed Central Google Scholar
Barnes, G. L. et al. Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases associated osteolytic disease. Cancer Res.64, 4506–4513 (2004). ArticleCASPubMed Google Scholar
Javed, A. et al. Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc. Natl Acad. Sci. USA102, 1454–1459 (2005). ArticleCASPubMedPubMed Central Google Scholar
Vradii, D. et al. A point mutation in AML1 disrupts subnuclear targeting, prevents myeloid differentiation, and results in a transformation-like phenotype. Proc. Natl Acad. Sci USA102, 7174–7179 (2005). References 56 and 57 show that the impaired subnuclear targeting of RUNX1 or RUNX2 transcription factors results in a differentiation block and transformation-like phenotype in myeloid progenitors or the inhibition of osteolytic activity of breast cancer cells, respectively. ArticleCASPubMedPubMed Central Google Scholar
Kamath, R. V. et al. Perinucleolar compartment prevalence has an independent prognostic value for breast cancer. Cancer Res.65, 246–253 (2005). CASPubMed Google Scholar
Huang, S., Deerinck, T. J., Ellisman, M. H. & Spector, D. L. The dynamic organization of the perinucleolar compartment in the cell nucleus. J. Cell Biol.137, 965–974 (1997). ArticleCASPubMedPubMed Central Google Scholar
Branco, M. R. & Pombo, A. Chromosome organization: new facts, new models. Trends Cell Biol. (2006).
Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS. Biol.4, e138 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Sadoni, N., Cardoso, M. C., Stelzer, E. H., Leonhardt, H. & Zink, D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J. Cell Sci.117, 5353–5365 (2004). ArticleCASPubMed Google Scholar
Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell71, 701–708 (1992). This article reports cloning of the t(4;11) involving theALL1andAF4genes. ArticleCASPubMed Google Scholar
Lee, G. R., Spilianakis, C. G. & Flavell, R. A. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nature Immunol.6, 42–48 (2005). ArticleCAS Google Scholar
Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol.5, 1017–1027 (2004). ArticleCAS Google Scholar
Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature435, 637–645 (2005). References 64–66 show that inter- as well as intra-chromosomal interactions between gene loci contribute to gene regulation and cell phenotype determination. ArticleCASPubMed Google Scholar
Yamagata, T., Maki, K. & Mitani, K. Runx1/AML1 in normal and abnormal hematopoiesis. Int. J. Hematol.82, 1–8 (2005). ArticleCASPubMed Google Scholar
Heisterkamp, N., Stam, K., Groffen, J., de, K. A. & Grosveld, G. Structural organization of the bcr gene and its role in the Ph' translocation. Nature315, 758–761 (1985). ArticleCASPubMed Google Scholar
McKeithan, T. W. et al. Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor alpha-chain gene and sequences on the 3' side of MYC. Proc. Natl Acad. Sci. USA83, 6636–6640 (1986). ArticleCASPubMedPubMed Central Google Scholar
Salomoni, P., Guo, A. & Pandolfi, P. P. The role of PML in tumour suppression. Cell108, 165–170 (2002). ArticleCASPubMed Google Scholar
Negorev, D. & Maul, G. G. Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene20, 7234–7242 (2001). ArticleCASPubMed Google Scholar
Takahashi, Y., Lallemand-Breitenbach, V., Zhu, J. & de, T. H. PML nuclear bodies and apoptosis. Oncogene23, 2819–2824 (2004). ArticleCASPubMed Google Scholar
Kakizuka, A. et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell66, 663–674 (1991). ArticleCASPubMed Google Scholar
de The, H. et al. The PML-RAR α fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell66, 675–684 (1991). References 73 and 74 report the cloning of the t(15;17) translocation involvingPMLandRARgenes. ArticleCASPubMed Google Scholar
Bernardi, R. & Pandolfi, P. P. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene22, 9048–9057 (2003). ArticleCASPubMed Google Scholar
Dyck, J. A., Warrell, R. P. Jr, Evans, R. M. & Miller, W. H. Jr. Rapid diagnosis of acute promyelocytic leukemia by immunohistochemical localization of PML/RAR-α protein. Blood86, 862–867 (1995). CASPubMed Google Scholar
Weis, K. et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR α in acute promyelocytic leukemia cells. Cell76, 345–356 (1994). References 76 and 77 describe the use of mislocalized PML–RAR fusion protein in patients with acute promyelocytic leukaemia for diagnostic purposes, and the use of retinoic acid as a therapeutic agent that results in the restoration of PML subnuclear localization. ArticleCASPubMed Google Scholar
Jing, Y. & Waxman, S. The design of selective and non-selective combination therapy for acute promyelocytic leukemia. Curr. Top. Microbiol. Immunol.313, 245–269 (2007). CASPubMed Google Scholar
Matunis, M. J., Zhang, X. D. & Ellis, N. A. SUMO: the glue that binds. Dev. Cell11, 596–597 (2006). ArticleCASPubMed Google Scholar
Voss, T. C., Demarco, I. A., Booker, C. F. & Day, R. N. Functional interactions with Pit-1 reorganize co-repressor complexes in the living cell nucleus. J. Cell Sci.118, 3277–3288 (2005). ArticleCASPubMed Google Scholar
Gostissa, M., Hofmann, T. G., Will, H. & Del, S. G. Regulation of p53 functions: let's meet at the nuclear bodies. Curr. Opin. Cell Biol.15, 351–357 (2003). ArticleCASPubMed Google Scholar
Alao, J. P. et al. The cyclin D1 proto-oncogene is sequestered in the cytoplasm of mammalian cancer cell lines. Mol. Cancer5, 7 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Henderson, B. Nuclear transport as a target for cancer therapies. Drug Discov. Today8, 249 (2003). ArticlePubMed Google Scholar
Yashiroda, Y. & Yoshida, M. Nucleo-cytoplasmic transport of proteins as a target for therapeutic drugs. Curr. Med. Chem.10, 741–748 (2003). ArticleCASPubMed Google Scholar
Kau, T. R., Way, J. C. & Silver, P. A. Nuclear transport and cancer: from mechanism to intervention. Nature Rev. Cancer4, 106–117 (2004). ArticleCAS Google Scholar
Hu, M. C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell117, 225–237 (2004). ArticleCASPubMed Google Scholar
Henderson, B. R. Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nature Cell Biol.2, 653–660 (2000). ArticleCASPubMed Google Scholar
Krakowski, A. R., Laboureau, J., Mauviel, A., Bissell, M. J. & Luo, K. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-β signaling by sequestration of the Smad proteins. Proc. Natl Acad. Sci. USA102, 12437–12442 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ito, K. et al. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res.65, 7743–7750 (2005). ArticleCASPubMed Google Scholar
Vigneri, P. & Wang, J. Y. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nature Med.7, 228–234 (2001). This is the first study to show that the specific nuclear entrapment of BCR-AML tyrosine kinase can be used to target leukaemic cells in patients with chronic myeloid leukaemia. ArticleCASPubMed Google Scholar
Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell10, 1119–1128 (2002). ArticleCASPubMed Google Scholar
Lian, J. B. et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit. Rev. Eukaryot. Gene Expr.14, 1–41 (2004). ArticleCASPubMed Google Scholar
Monteiro, A. N. & Birge, R. B. A nuclear function for the tumor suppressor BRCA1. Histol. Histopathol.15, 299–307 (2000). CASPubMed Google Scholar
Cai, S., Lee, C. C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nature Genet.38, 1278–1288 (2006). ArticleCASPubMed Google Scholar
Cai, S., Han, H. J. & Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nature Genet.34, 42–51 (2003). ArticleCASPubMed Google Scholar
Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature419, 641–645 (2002). ArticleCASPubMed Google Scholar
Dickinson, L. A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell70, 631–645 (1992). ArticleCASPubMed Google Scholar
Stenoien, D. L. et al. Subnuclear trafficking of estrogen receptor-α and steroid receptor coactivator-1. Mol. Endocrinol.14, 518–534 (2000). CASPubMed Google Scholar
DeFranco, D. B. & Guerrero, J. Nuclear matrix targeting of steroid receptors: specific signal sequences and acceptor proteins. Crit. Rev. Eukaryot. Gene Expr.10, 39–44 (2000). ArticleCASPubMed Google Scholar
Mancini, M. G., Liu, B., Sharp, Z. D. & Mancini, M. A. Subnuclear partitioning and functional regulation of the Pit-1 transcription factor. J. Cell Biochem.72, 322–338 (1999). ArticleCASPubMed Google Scholar
Tang, Y. et al. The DNA-binding and τ2 transactivation domains of the rat glucocorticoid receptor constitute a nuclear matrix targeting signal. Mol. Endocrinol.12, 1420–1431 (1998). CASPubMed Google Scholar
McNeil, S. et al. Targeting of the YY1 transcription factor to the nucleolus and the nuclear matrix in situ: the C-terminus is a principal determinant for nuclear trafficking. J. Cell. Biochem.68, 500–510 (1998). ArticleCASPubMed Google Scholar
Zaidi, S. K. et al. A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. J. Cell Sci.114, 3093–3102 (2001). CASPubMed Google Scholar
Seo, J., Lozano, M. M. & Dudley, J. P. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J. Biol. Chem.280, 24600–24609 (2005). ArticleCASPubMed Google Scholar
Erfurth, F., Hemenway, C. S., de Erkenez, A. C. & Domer, P. H. MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia18, 92–102 (2004). ArticleCASPubMed Google Scholar
de la Serna, I., Ohkawa, Y. & Imbalzano, A. N. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nature Rev. Genet.7, 461–473 (2006). ArticleCASPubMed Google Scholar
Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.31, 89–97 (2006). ArticleCASPubMed Google Scholar
Guidi, C. J., Veal, T. M., Jones, S. N. & Imbalzano, A. N. Transcriptional compensation for loss of an allele of the Ini1 tumor suppressor. J. Biol. Chem.279, 4180–4185 (2004). ArticleCASPubMed Google Scholar
Homma, N. et al. Spreading of methylation within RUNX3 CpG island in gastric cancer. Cancer Sci.97, 51–56 (2006). ArticleCASPubMed Google Scholar
Ushijima, T. Detection and interpretation of altered methylation patterns in cancer cells. Nature Rev. Cancer5, 223–231 (2005). ArticleCAS Google Scholar
Leone, G., Voso, M. T., Teofili, L. & Lubbert, M. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin. Immunol.109, 89–102 (2003). ArticleCASPubMed Google Scholar
Yoo, C. B. & Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nature Rev. Drug Discov.5, 37–50 (2006). ArticleCAS Google Scholar
Marks, P. A., Richon, V. M., Miller, T. & Kelly, W. K. Histone deacetylase inhibitors. Adv. Cancer Res.91, 137–168 (2004). ArticleCASPubMed Google Scholar
He, S. & Davie, J. R. Sp1 and Sp3 foci distribution throughout mitosis. J. Cell Sci.119, 1063–1070 (2006). ArticleCASPubMed Google Scholar
Zaidi, S. K. et al. Mitotic partitioning and selective reorganization of tissue specific transcription factors in progeny cells. Proc. Natl Acad. Sci. USA100, 14852–14857 (2003). ArticleCASPubMedPubMed Central Google Scholar
Young, D. W. et al. Mitotic retention of gene expression patterns by the cell fate determining transcription factor Runx2. Proc. Natl Acad. Sci. USA104, 3189–3194 (2007). References 117 and 118 show the bookmarking of RNA Pol II genes by a tissue-restricted transcription factor during mitosis. These studies provide mechanistic insights into maintenance of cell phenotype through successive cell divisions. ArticleCASPubMedPubMed Central Google Scholar