Cell cycle, CDKs and cancer: a changing paradigm (original) (raw)
Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer1, 222–231 (2001). CAS Google Scholar
Massague, J. G1 cell-cycle control and cancer. Nature432, 298–306 (2004). CASPubMed Google Scholar
Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature432, 316–323 (2004). CASPubMed Google Scholar
Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Rev. Cancer5, 773–785 (2005). CAS Google Scholar
Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci.30, 630–641 (2005). CASPubMed Google Scholar
Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase. Nature Rev. Mol. Cell Biol.5, 792–804 (2004). CAS Google Scholar
Perez de Castro, I., de Carcer, G. & Malumbres, M. A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy. Carcinogenesis28, 899–912 (2007). CASPubMed Google Scholar
Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol.8, 379–393 (2007). ArticleCAS Google Scholar
Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell98, 859–869 (1999). CASPubMed Google Scholar
Lundberg, A. S. & Weinberg, R. A. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell. Biol.18, 753–761 (1998). CASPubMedPubMed Central Google Scholar
van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science262, 2050–2054 (1993). CASPubMed Google Scholar
Pagano, M. et al. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J. Cell Biol.121, 101–111 (1993). CASPubMed Google Scholar
Hochegger, H., Takeda, S. & Hunt, T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nature Rev. Mol. Cell Biol.9, 910–916 (2008). CAS Google Scholar
Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nature Genet.22, 44–52 (1999). CASPubMed Google Scholar
Tsutsui, T. et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol. Cell. Biol.19, 7011–7019 (1999). CASPubMedPubMed Central Google Scholar
Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell118, 493–504 (2004). CASPubMed Google Scholar
Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet.35, 25–31 (2003). CASPubMed Google Scholar
Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. Cdk2 knockout mice are viable. Curr. Biol.13, 1775–1785 (2003). References 17 and 18 provide genetic evidence that CDK2 is not essential for DNA synthesis, or for any other essential step within the mitotic cell cycle. CASPubMed Google Scholar
Santamaria, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature448, 811–815 (2007). Genetic ablation of all interphase CDKs — CDK2, CDK4 and CDK6 — does not result in cell cycle defects in most cell types. In addition, this manuscript describes that CDK1 is essential for cell division. CASPubMed Google Scholar
Barriere, C. et al. Mice thrive without Cdk4 and Cdk2. Mol. Oncol.1, 72–83 (2007). This manuscript demonstrates that the two main interphase CDKs are dispensable for adult homeostasis as well as for proliferation of adult hepatocytes during liver regeneration. CASPubMedPubMed Central Google Scholar
Berthet, C. et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev. Cell10, 563–573 (2006). CASPubMed Google Scholar
Satyanarayana, A. et al. Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development135, 3389–3400 (2008). CASPubMed Google Scholar
Ciemerych, M. A. & Sicinski, P. Cell cycle in mouse development. Oncogene24, 2877–2898 (2005). CASPubMed Google Scholar
Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell118, 477–491 (2004). References 14–16 and 24 provide genetic evidence that the D-type cyclins as well as their cognate CDKs, CDK4 and CDK6, are not essential for entry into the cell cycle. CASPubMed Google Scholar
Geng, Y. et al. Cyclin E ablation in the mouse. Cell114, 431–443 (2003). CASPubMed Google Scholar
Parisi, T. et al. Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J.22, 4794–4803 (2003). CASPubMedPubMed Central Google Scholar
Geng, Y. et al. Kinase-independent function of cyclin, E. Mol. Cell25, 127–139 (2007). CASPubMed Google Scholar
Geng, Y. et al. Rescue of cyclin D1 deficiency by knockin cyclin, E. Cell97, 767–777 (1999). References 25–28 provide genetic evidence on the essential functions of E-type cyclins, their CDK2-independent roles and their functional overlap with cyclin D1. CASPubMed Google Scholar
Murphy, M. et al. Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nature Genet.15, 83–86 (1997). CASPubMed Google Scholar
Brandeis, M. et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc. Natl Acad. Sci. USA95, 4344–4349 (1998). CASPubMedPubMed Central Google Scholar
Kippin, T. E., Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev.19, 756–767 (2005). CASPubMedPubMed Central Google Scholar
Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet.39, 99–105 (2007). CASPubMed Google Scholar
Fasano, C. A. et al. shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell1, 87–99 (2007). CASPubMed Google Scholar
Pechnick, R. N., Zonis, S., Wawrowsky, K., Pourmorady, J. & Chesnokova, V. p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc. Natl Acad. Sci. USA105, 1358–1363 (2008). CASPubMedPubMed Central Google Scholar
Walkley, C. R., Fero, M. L., Chien, W. M., Purton, L. E. & McArthur, G. A. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biol.7, 172–178 (2005). CASPubMed Google Scholar
Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science287, 1804–1808 (2000). CASPubMed Google Scholar
Besson, A. et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev.21, 1731–1746 (2007). CASPubMedPubMed Central Google Scholar
Yuan, Y., Shen, H., Franklin, D. S., Scadden, D. T. & Cheng, T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nature Cell Biol.6, 436–442 (2004). CASPubMed Google Scholar
Yu, H., Yuan, Y., Shen, H. & Cheng, T. Hematopoietic stem cell exhaustion impacted by p18INK4C and p21Cip1/Waf1 in opposite manners. Blood107, 1200–1206 (2006). CASPubMedPubMed Central Google Scholar
Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature443, 421–426 (2006). CASPubMed Google Scholar
Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature443, 453–457 (2006). CASPubMed Google Scholar
Pei, X. H., Bai, F., Smith, M. D. & Xiong, Y. p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers. Cancer Res.67, 3162–3170 (2007). CASPubMed Google Scholar
Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature443, 448–452 (2006). CASPubMedPubMed Central Google Scholar
Rosu-Myles, M., Taylor, B. J. & Wolff, L. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors. Exp. Hematol.35, 394–406 (2007). CASPubMed Google Scholar
Carlson, M. E., Hsu, M. & Conboy, I. M. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature454, 528–532 (2008). CASPubMedPubMed Central Google Scholar
Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell132, 299–310 (2008). CASPubMedPubMed Central Google Scholar
Jablonska, B. et al. Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J. Cell Biol.179, 1231–1245 (2007). CASPubMedPubMed Central Google Scholar
Ortega, S., Malumbres, M. & Barbacid, M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta1602, 73–87 (2002). CASPubMed Google Scholar
Sotillo, R. et al. Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J.20, 6637–6647 (2001). CASPubMedPubMed Central Google Scholar
Rane, S. G., Cosenza, S. C., Mettus, R. V. & Reddy, E. P. Germ line transmission of the Cdk4R24C mutation facilitates tumorigenesis and escape from cellular senescence. Mol. Cell. Biol.22, 644–656 (2002). CASPubMedPubMed Central Google Scholar
Martin, A. et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1. Cancer Cell7, 591–598 (2005). CASPubMed Google Scholar
Aleem, E., Kiyokawa, H. & Kaldis, P. Cdc2–cyclin E complexes regulate the G1/S phase transition. Nature Cell Biol.7, 831–836 (2005). CASPubMed Google Scholar
Tetsu, O. & McCormick, F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell3, 233–245 (2003). This manuscript illustrates that different human tumour cell lines have selective requirements for CDK activity. CASPubMed Google Scholar
Miliani de Marval, P. L. et al. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol. Cell. Biol.24, 7538–7547 (2004). PubMedPubMed Central Google Scholar
Yu, Q. et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell9, 23–32 (2006). CASPubMed Google Scholar
Reddy, H. K. et al. Cyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis. Cancer Res.65, 10174–10178 (2005). CASPubMed Google Scholar
Landis, M. W., Pawlyk, B. S., Li, T., Sicinski, P. & Hinds, P. W. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell9, 13–22 (2006). References 56–58 demonstrate the requirement for the mouse CDK4–cyclin D activity in ERBB2-induced breast tumours suggesting possible therapeutic uses of specific CDK4 inhibitors in ERBB2-positive breast cancer. CASPubMed Google Scholar
Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature411, 1017–1021 (2001). This pioneer study reports that cyclin D1 (and hence CDK4 or CDK6 activity) is essential forErbb2- orHras-induced tumours but notMyc- orWnt1-induced tumours. CASPubMed Google Scholar
Malumbres, M. & Barbacid, M. Is Cyclin D1–CDK4 kinase a bona fide cancer target? Cancer Cell9, 2–4 (2006). CASPubMed Google Scholar
Aguilera, A. & Gomez-Gonzalez, B. Genome instability: a mechanistic view of its causes and consequences. Nature Rev. Genet.9, 204–217 (2008). CASPubMed Google Scholar
Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nature Rev. Mol. Cell Biol.9, 616–627 (2008). CAS Google Scholar
Lavin, M. F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nature Rev. Mol. Cell Biol.9, 759–769 (2008). CAS Google Scholar
Caldecott, K. W. Single-strand break repair and genetic disease. Nature Rev. Genet.9, 619–631 (2008). CASPubMed Google Scholar
Antoni, L., Sodha, N., Collins, I. & Garrett, M. D. CHK2 kinase: cancer susceptibility and cancer therapy — two sides of the same coin? Nature Rev. Cancer7, 925–936 (2007). CAS Google Scholar
Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature434, 864–870 (2005). CASPubMed Google Scholar
Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature444, 633–637 (2006). CASPubMed Google Scholar
Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature434, 907–913 (2005). CASPubMed Google Scholar
Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature444, 638–642 (2006). This series of articles (references 66–69) demonstrate the tumour suppressor role of the DNA damage response and the effects of its alteration in human tumours. CASPubMed Google Scholar
Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science319, 1352–1355 (2008). CASPubMed Google Scholar
Yata, K. & Esashi, F. Dual role of CDKs in DNA repair: To be, or not to be. DNA Repair (Amst)8, 6–18 (2009). CAS Google Scholar
Huertas, P., Cortes-Ledesma, F., Sartori, A. A., Aguilera, A. & Jackson, S. P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature455, 689–692 (2008). CASPubMedPubMed Central Google Scholar
Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature434, 598–604 (2005). References 72 and 73 report an unexpected function for yeast and mammalian CDKs in DNA repair. CASPubMed Google Scholar
Queralt, E. & Uhlmann, F. Cdk-counteracting phosphatases unlock mitotic exit. Curr. Opin. Cell Biol.20, 661–668 (2008). CASPubMedPubMed Central Google Scholar
Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol.7, 644–656 (2006). CAS Google Scholar
Sullivan, M. & Morgan, D. O. Finishing mitosis, one step at a time. Nature Rev. Mol. Cell Biol.8, 894–903 (2007). CAS Google Scholar
Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer6, 369–381 (2006). CAS Google Scholar
Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nature Cell Biol.8, 607–614 (2006). CASPubMed Google Scholar
Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell30, 290–302 (2008). CASPubMed Google Scholar
Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genet.38, 1043–1048 (2006). CASPubMed Google Scholar
Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nature Rev. Cancer7, 911–924 (2007). CAS Google Scholar
Duensing, A. et al. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene25, 2943–2949 (2006). CASPubMedPubMed Central Google Scholar
Hanashiro, K., Kanai, M., Geng, Y., Sicinski, P. & Fukasawa, K. Roles of cyclins A and E in induction of centrosome amplification in p53-compromised cells. Oncogene27, 5288–5302 (2008). CASPubMedPubMed Central Google Scholar
Hochegger, H. et al. An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J. Cell Biol.178, 257–268 (2007). CASPubMedPubMed Central Google Scholar
Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genet.36, 1159–1161 (2004). CASPubMed Google Scholar
Mantel, C. et al. Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood109, 4518–4527 (2007). CASPubMedPubMed Central Google Scholar
Jeganathan, K., Malureanu, L., Baker, D. J., Abraham, S. C. & van Deursen, J. M. Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J. Cell Biol.179, 255–267 (2007). CASPubMedPubMed Central Google Scholar
Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nature Genet.36, 744–749 (2004). CASPubMed Google Scholar
Perera, D. et al. Bub1 maintains centromeric cohesion by activation of the spindle checkpoint. Dev. Cell13, 566–579 (2007). CASPubMed Google Scholar
Dai, W. et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res.64, 440–445 (2004). CASPubMed Google Scholar
Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature409, 355–359 (2001). CASPubMed Google Scholar
Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell11, 9–23 (2007). References 93–94 show that both decreased and increased levels of the SAC regulator MAD2L1 cause CIN tumours in mice, suggesting the existence of new group of tumour-related genes with features of both oncogenes and tumour suppressor genes. CASPubMed Google Scholar
Weaver, B. A. & Cleveland, D. W. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res.67, 10103–10105 (2007). CASPubMedPubMed Central Google Scholar
Engelbert, D., Schnerch, D., Baumgarten, A. & Wasch, R. The ubiquitin ligase APCCdh1 is required to maintain genome integrity in primary human cells. Oncogene27, 907–917 (2008). CASPubMed Google Scholar
Garcia-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nature Cell Biol.10, 802–811 (2008). PubMed Google Scholar
Li, M. et al. The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nature Cell Biol.10, 1083–1089 (2008). References 98 and 99 provide anin vivodemonstration of the relevance of the APC/C activity in maintaining the control of CDK function and cell cycle regulation for preventing GIN and tumour formation. CASPubMed Google Scholar
Keen, N. & Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nature Rev. Cancer4, 927–936 (2004). CAS Google Scholar
Malumbres, M. & Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev.17, 60–65 (2007). CASPubMed Google Scholar
Perez de Castro, I., de Carcer, G., Montoya, G. & Malumbres, M. Emerging cancer therapeutic opportunities by inhibiting mitotic kinases. Curr. Opin. Pharmacol.8, 375–383 (2008). CASPubMed Google Scholar
Petronczki, M., Lenart, P. & Peters, J. M. Polo on the rise — from mitotic entry to cytokinesis with Plk1. Dev. Cell14, 646–659 (2008). CASPubMed Google Scholar
Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nature Rev. Cancer6, 321–330 (2006). CAS Google Scholar
Taylor, S. & Peters, J. M. Polo and Aurora kinases: lessons derived from chemical biology. Curr. Opin. Cell Biol.20, 77–84 (2008). CASPubMed Google Scholar
Malumbres, M., Pevarello, P., Barbacid, M. & Bischoff, J. R. CDK inhibitors in cancer therapy: what is next? Trends Pharmacol. Sci.29, 16–21 (2008). CASPubMed Google Scholar
Shapiro, G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol.24, 1770–1783 (2006). CASPubMed Google Scholar
Larochelle, S. et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell25, 839–850 (2007). CASPubMedPubMed Central Google Scholar
Li, T., Inoue, A., Lahti, J. M. & Kidd, V. J. Failure to proliferate and mitotic arrest of CDK11p110/p58-null mutant mice at the blastocyst stage of embryonic cell development. Mol. Cell. Biol.24, 3188–3197 (2004). CASPubMedPubMed Central Google Scholar
Iorns, E. et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell13, 91–104 (2008). CASPubMed Google Scholar
Chandramouli, A. et al. Haploinsufficiency of the cdc2l gene contributes to skin cancer development in mice. Carcinogenesis28, 2028–2035 (2007). CASPubMed Google Scholar
Boveri, T. Zur Frage der Entstehung Maligner Tumoren (Gustav Fisher, Jena, Germany, 1914) (in German). Google Scholar
Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell11, 25–36 (2007). CASPubMed Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). An elegant proof of principle of the therapeutic value of inducing synthetic lethal alterations in tumours. CASPubMed Google Scholar
Huang, D., Friesen, H. & Andrews, B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol. Microbiol.66, 303–314 (2007). CASPubMed Google Scholar
Nebreda, A. R. CDK activation by non-cyclin proteins. Curr. Opin. Cell Biol.18, 192–198 (2006). CASPubMed Google Scholar
Bloom, J. & Cross, F. R. Multiple levels of cyclin specificity in cell-cycle control. Nature Rev. Mol. Cell Biol.8, 149–160 (2007). CAS Google Scholar
Ren, S. & Rollins, B. J. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell117, 239–251 (2004). CASPubMed Google Scholar
Ye, X., Zhu, C. & Harper, J. W. A premature-termination mutation in the Mus. musculus cyclin-dependent kinase 3 gene. Proc. Natl Acad. Sci. USA98, 1682–1686 (2001). CASPubMedPubMed Central Google Scholar
Zhang, J. et al. Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc. Natl Acad. Sci. USA105, 8772–8777 (2008). CASPubMedPubMed Central Google Scholar
Maestre, C., Delgado-Esteban, M., Gomez-Sanchez, J. C., Bolanos, J. P. & Almeida, A. Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J.27, 2736–2745 (2008). CASPubMedPubMed Central Google Scholar
Fisher, R. P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci.118, 5171–5180 (2005). CASPubMed Google Scholar
Loyer, P., Trembley, J. H., Katona, R., Kidd, V. J. & Lahti, J. M. Role of CDK/cyclin complexes in transcription and RNA splicing. Cell Signal17, 1033–1051 (2005). CASPubMed Google Scholar
Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature455, 547–551 (2008). CASPubMedPubMed Central Google Scholar
Morris, E. J. et al. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature455, 552–556 (2008). References 124 and 125 illustrate the role of CDK8, a CDK not directly implicated in the cell cycle, in human tumour development. CASPubMedPubMed Central Google Scholar
Petretti, C. et al. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep.7, 418–424 (2006). CASPubMedPubMed Central Google Scholar
Wilker, E. W. et al. 14-3-3σ controls mitotic translation to facilitate cytokinesis. Nature446, 329–332 (2007). CASPubMed Google Scholar
Yokoyama, H. et al. Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J. Cell Biol.180, 867–875 (2008). CASPubMedPubMed Central Google Scholar
Hu, D., Valentine, M., Kidd, V. J. & Lahti, J. M. CDK11p58 is required for the maintenance of sister chromatid cohesion. J. Cell Sci.120, 2424–2434 (2007). CASPubMed Google Scholar
Hampsey, M. & Kinzy, T. G. Synchronicity: policing multiple aspects of gene expression by Ctk1. Genes Dev.21, 1288–1291 (2007). CASPubMed Google Scholar
Chen, H. H., Wang, Y. C. & Fann, M. J. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol. Cell. Biol.26, 2736–2745 (2006). CASPubMedPubMed Central Google Scholar
Chen, H. H., Wong, Y. H., Geneviere, A. M. & Fann, M. J. CDK13/CDC2L5 interacts with L-type cyclins and regulates alternative splicing. Biochem. Biophys. Res. Commun.354, 735–740 (2007). CASPubMed Google Scholar
Martin, J. et al. Genetic rescue of Cdk4 null mice restores pancreatic β-cell proliferation but not homeostatic cell number. Oncogene22, 5261–5269 (2003). CASPubMed Google Scholar
Mettus, R. V. & Rane, S. G. Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene22, 8413–8421 (2003). CASPubMed Google Scholar
Jirawatnotai, S. et al. Cdk4 is indispensable for postnatal proliferation of the anterior pituitary. J. Biol. Chem.279, 51100–51106 (2004). CASPubMed Google Scholar
Moons, D. S. et al. Pituitary hypoplasia and lactotroph dysfunction in mice deficient for cyclin-dependent kinase-4. Endocrinology143, 3001–3008 (2002). CASPubMed Google Scholar
Sotillo, R. et al. Cooperation between Cdk4 and p27kip1 in tumor development: a preclinical model to evaluate cell cycle inhibitors with therapeutic activity. Cancer Res.65, 3846–3852 (2005). CASPubMed Google Scholar
Hartwell, L. H., Culotti, J. & Reid, B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl Acad. Sci. USA66, 352–359 (1970). CASPubMedPubMed Central Google Scholar
Nurse, P. Genetic control of cell size at cell division in yeast. Nature256, 547–551 (1975). CASPubMed Google Scholar
Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell33, 389–396 (1983). CASPubMed Google Scholar
Lee, M. G. & Nurse, P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature327, 31–35 (1987). CASPubMed Google Scholar
DeCaprio, J. A. et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell58, 1085–1095 (1989). CASPubMed Google Scholar
Buchkovich, K., Duffy, L. A. & Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell58, 1097–1105 (1989). CASPubMed Google Scholar
Chen, P. L., Scully, P., Shew, J. Y., Wang, J. Y. & Lee, W. H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell58, 1193–1198 (1989). CASPubMed Google Scholar
Weinert, T. & Hartwell, L. Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae. J. Cell Sci. Suppl12, 145–148 (1989). CASPubMed Google Scholar
Xiong, Y., Connolly, T., Futcher, B. & Beach, D. Human D-type cyclin. Cell65, 691–699 (1991). CASPubMed Google Scholar
Matsushime, H., Roussel, M. F., Ashmun, R. A. & Sherr, C. J. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell65, 701–713 (1991). CASPubMed Google Scholar
Lew, D. J., Dulic, V. & Reed, S. I. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell66, 1197–1206 (1991). CASPubMed Google Scholar
Matsushime, H. et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell71, 323–34 (1992). CASPubMed Google Scholar
Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356, 215–221 (1992). CASPubMed Google Scholar
Farmer, G. et al. Wild-type p53 activates transcription in vitro. Nature358, 83–86 (1992). CASPubMed Google Scholar
Hupp, T. R., Meek, D. W., Midgley, C. A. & Lane, D. P. Regulation of the specific DNA binding function of p53. Cell71, 875–886 (1992). CASPubMed Google Scholar
Lu, X., Park, S. H., Thompson, T. C. & Lane, D. P. Ras-induced hyperplasia occurs with mutation of p53, but activated ras and myc together can induce carcinoma without p53 mutation. Cell70, 153–161 (1992). CASPubMed Google Scholar
Lane, D. P. Cancer. p53, guardian of the genome. Nature358, 15–16 (1992). CASPubMed Google Scholar
Kuerbitz, S. J., Plunkett, B. S., Walsh, W. V. & Kastan, M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl Acad. Sci. USA89, 7491–7495 (1992). CASPubMedPubMed Central Google Scholar
Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell71, 587–597 (1992). CASPubMed Google Scholar
Xiong, Y., Zhang, H. & Beach, D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev.7, 1572–1583 (1993). CASPubMed Google Scholar
Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature366, 704–707 (1993). CASPubMed Google Scholar
Xiong, Y. et al. p21 is a universal inhibitor of cyclin kinases. Nature366, 701–704 (1993). CASPubMed Google Scholar
Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev.8, 29–22 (1994). Google Scholar
Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell78, 67–74 (1994). CASPubMed Google Scholar
Kato, J. Y., Matsuoka, M., Polyak, K., Massague, J. & Sherr, C. J. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell79, 487–96 (1994). CASPubMed Google Scholar
Guan, K. L. et al. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev.8, 2939–2952 (1994). CASPubMed Google Scholar
Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell78, 59–66 (1994). CASPubMed Google Scholar
Lee, M. H., Reynisdottir, I. & Massague, J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev.9, 639–49 (1995). CASPubMed Google Scholar
Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev.9, 650–662 (1995). CASPubMed Google Scholar
Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science274, 246–248 (1996). CASPubMed Google Scholar
Loda, M. et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med.3, 231–234 (1997). CASPubMed Google Scholar
Catzavelos, C. et al. Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nature Med.3, 227–230 (1997). CASPubMed Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). CASPubMed Google Scholar
Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature392, 300–303 (1998). CASPubMed Google Scholar
Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genet.36, 1159–1161 (2004). CASPubMed Google Scholar
Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436, 720–724 (2005). CASPubMed Google Scholar
Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature436, 642 (2005). CASPubMed Google Scholar
Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature436, 660–665 (2005). CASPubMed Google Scholar
Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature436, 725–730 (2005). CASPubMedPubMed Central Google Scholar