Cancer immunotherapy via dendritic cells (original) (raw)
Darnell, R. B. Onconeural antigens and the paraneoplastic neurologic disorders: at the intersection of cancer, immunity, and the brain. Proc. Natl Acad. Sci. USA93, 4529–4536 (1996). ArticleCASPubMedPubMed Central Google Scholar
Albert, M. L. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nature Med.4, 1321–1324 (1998). ArticleCASPubMed Google Scholar
Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med.208, 1989–2003 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med.208, 2005–2016 (2011). References 3 and 4 demonstrate that DCs are essential for the generation of anti-tumour immunityin vivo. ArticleCASPubMedPubMed Central Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCASPubMed Google Scholar
Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature449, 419–426 (2007). References 5 and 6 are outstanding reviews that cover a decade of research on DCs starting from basic biology and moving onto pathophysiology and medicine. ArticleCASPubMed Google Scholar
Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 17 Nov 2011 [epub ahead of print].
Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med.137, 1142–1162 (1973). ArticleCASPubMedPubMed Central Google Scholar
Steinman, R. M. & Cohn, Z. A. in Mononuclear Phagocytes in Immunity, Infection, and Pathology (ed. van Furth, R.) 95–109 (Blackwell Scientific Publications Ltd., Oxford, 1975). Google Scholar
Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol.7, 19–30 (2007). ArticleCAS Google Scholar
Liu, K. & Nussenzweig, M. C. Origin and development of dendritic cells. Immunol. Rev.234, 45–54 (2010). An outstanding review summarizing the development of DCs and the identification of transcription factors that are specific to DC lineage ArticleCASPubMed Google Scholar
Trombetta, E. S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol.23, 975–1028 (2005). An outstanding review that summarizes the principles of antigen capture, processing and presentation by DCs. ArticleCASPubMed Google Scholar
Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000). ArticleCASPubMed Google Scholar
Itano, A. A. & Jenkins, M. K. Antigen presentation to naive CD4 T cells in the lymph node. Nature Immunol.4, 733–739 (2003). ArticleCAS Google Scholar
Albert, M. L. & Bhardwaj, N. Resurrecting the dead: DCs cross-present antigen derived from apoptotic cells on MHC I. Immunologist6, 194–198 (1998). CAS Google Scholar
Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med.188, 1359–1368 (1998). ArticleCASPubMedPubMed Central Google Scholar
Heath, W. R. & Carbone, F. R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol.19, 47–64 (2001). ArticleCASPubMed Google Scholar
Jego, G., Pascual, V., Palucka, A. K. & Banchereau, J. Dendritic cells control B cell growth and differentiation. Curr. Dir. Autoimmun.8, 124–139 (2005). ArticleCASPubMed Google Scholar
Qi, H., Egen, J. G., Huang, A. Y. & Germain, R. N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science312, 1672–1676 (2006). ArticleCASPubMed Google Scholar
Batista, F. D. & Harwood, N. E. The who, how and where of antigen presentation to B cells. Nature Rev. Immunol.9, 15–27 (2009). ArticleCAS Google Scholar
Bergtold, A., Desai, D. D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity23, 503–514 (2005). ArticleCASPubMed Google Scholar
Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003). This review describes the principles of tolerance induction by DCs. ArticleCASPubMed Google Scholar
Caux, C. et al. Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med.180, 1263–1272 (1994). ArticleCASPubMed Google Scholar
Fujii, S., Liu, K., Smith, C., Bonito, A. J. & Steinman, R. M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med.199, 1607–1618 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pulendran, B., Palucka, K. & Banchereau, J. Sensing pathogens and tuning immune responses. Science293, 253–256 (2001). ArticleCASPubMed Google Scholar
Palucka, A. K. & Banchereau, J. How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr. Opin. Immunol.14, 420–431 (2002). ArticleCASPubMed Google Scholar
Cheng, P., Zhou, J. & Gabrilovich, D. Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunol. Rev.234, 105–119 (2010). ArticleCASPubMed Google Scholar
Maldonado-Lopez, R. et al. CD8α+ and CD8α- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med.189, 587–592 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA96, 1036–1041 (1999). References 31 and 32 demonstrate for the first time that distinct subsets of DCs induce different types of immune responsesin vivo. ArticleCASPubMedPubMed Central Google Scholar
Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol.181, 3755–3759 (2008). ArticleCASPubMed Google Scholar
Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nature Med.17, 479–487 (2011). ArticleCASPubMed Google Scholar
Chevrier, N. et al. Systematic Discovery of TLR signaling components delineates viral-sensing circuits. Cell147, 853–867 (2011). ArticleCASPubMed Google Scholar
Dzionek, A. et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol.165, 6037–6046 (2000). ArticleCASPubMed Google Scholar
Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science284, 1835–1837 (1999). ArticleCASPubMed Google Scholar
Di Pucchio, T. et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nature Immunol.9, 551–557 (2008). ArticleCAS Google Scholar
Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity19, 225–234 (2003). ArticleCASPubMed Google Scholar
Shaw, J., Wang, Y. H., Ito, T., Arima, K. & Liu, Y. J. Plasmacytoid dendritic cells regulate B-cell growth and differentiation via CD70. Blood115, 3051–3057 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y. J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol.23, 275–306 (2005). An outstanding summary of the biology of pDCs and the production of type I interferon family members. ArticleCASPubMed Google Scholar
Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med.207, 1273–1281 (2010). ArticleCASPubMedPubMed Central Google Scholar
Crozat, K. et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med.207, 1283–1292 (2010). ArticleCASPubMedPubMed Central Google Scholar
Klechevsky, E. et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity29, 497–510 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nestle, F. O., Zheng, X. G., Thompson, C. B., Turka, L. A. & Nickoloff, B. J. Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol.151, 6535–6545 (1993). CASPubMed Google Scholar
Caux, C. et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor α: II. Functional analysis. Blood90, 1458–1470 (1997). The concept and the first demonstration of distinct subsets of human DCs eliciting different types of T cell immunityin vitroare presented. ArticleCASPubMed Google Scholar
Ueno, H. et al. Dendritic cell subsets in health and disease. Immunol. Rev.219, 118–142 (2007). ArticleCASPubMed Google Scholar
Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell143, 416–429 (2010). ArticleCASPubMedPubMed Central Google Scholar
Romani, N. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med.180, 83–93 (1994). ArticleCASPubMed Google Scholar
Paquette, R. L. et al. Interferon-α and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J. Leukoc. Biol.64, 358–367 (1998). ArticleCASPubMed Google Scholar
Chomarat, P., Dantin, C., Bennett, L., Banchereau, J. & Palucka, A. K. TNF skews monocyte differentiation from macrophages to dendritic cells. J. Immunol.171, 2262–2269 (2003). ArticleCASPubMed Google Scholar
Mohamadzadeh, M. et al. Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J. Exp. Med.194, 1013–1020 (2001). ArticleCASPubMedPubMed Central Google Scholar
Levings, M. K. et al. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood105, 1162–1169 (2005). ArticleCASPubMed Google Scholar
Zapata-Gonzalez, F. et al. 9-cis-Retinoic acid (9cRA), a retinoid X receptor (RXR) ligand, exerts immunosuppressive effects on dendritic cells by RXR-dependent activation: inhibition of peroxisome proliferator-activated receptor γ blocks some of the 9cRA activities, and precludes them to mature phenotype development. J. Immunol.178, 6130–6139 (2007). ArticleCASPubMed Google Scholar
Penna, G. & Adorini, L. 1 α, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol.164, 2405–2411 (2000). ArticleCASPubMed Google Scholar
Jiang, A. et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity27, 610–624 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature Immunol.12, 959–965 (2011). ArticleCAS Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010). An outstanding review that focuses on how phagocytes recognize microbes. ArticleCASPubMed Google Scholar
Reis e Sousa, C. Dendritic cells in a mature age. Nature Rev. Immunol.6, 476–483 (2006). ArticleCAS Google Scholar
Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature458, 899–903 (2009). The first identification of a DC receptor that is involved in the recognition of necrotic cells; the engagement of this receptor leads to the generation of immunity. ArticleCASPubMedPubMed Central Google Scholar
Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science315, 107–111 (2007). Targeting distinct subsets of DCsin vivowith specific antibodies generated distinct types of T cell responses through distinct antigen-processing pathways. ArticleCASPubMed Google Scholar
Tesniere, A. et al. Immunogenic cancer cell death: a key-lock paradigm. Curr. Opin. Immunol.20, 504–511 (2008). This paper discusses how different types of cell death, including those induced by chemotherapy, might induce anti-tumour immunity. ArticleCASPubMed Google Scholar
Davis, I. D., Jefford, M., Parente, P. & Cebon, J. Rational approaches to human cancer immunotherapy. J. Leukoc. Biol.73, 3–29 (2003). ArticleCASPubMed Google Scholar
Dunne, A., Marshall, N. A. & Mills, K. H. TLR based therapeutics. Curr. Opin. Pharmacol.11, 404–411 (2011). ArticleCASPubMed Google Scholar
Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med.202, 1131–1139 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Z. et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity34, 866–878 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dhodapkar, M. V., Dhodapkar, K. M. & Palucka, A. K. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ.15, 39–50 (2008). ArticleCASPubMed Google Scholar
Ravichandran, K. S. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity35, 445–455 (2011). An outstanding review on the recognition of apoptotic cells by phagocytes. ArticleCASPubMedPubMed Central Google Scholar
Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell142, 699–713 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chomarat, P., Banchereau, J., Davoust, J. & Palucka, A. K. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nature Immunol.1, 510–514 (2000). ArticleCAS Google Scholar
Hiltbold, E. M., Vlad, A. M., Ciborowski, P., Watkins, S. C. & Finn, O. J. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells [In Process. Citation]. J. Immunol.165, 3730–3741 (2000). ArticleCASPubMed Google Scholar
Fiorentino, D. F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol.146, 3444–3451 (1991). CASPubMed Google Scholar
Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J. & Enk, A. H. Induction of tolerance by IL-10-treated dendritic cells. J. Immunol.159, 4772–4780 (1997). CASPubMed Google Scholar
Aspord, C. et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J. Exp. Med.204, 1037–1047 (2007). ArticleCASPubMedPubMed Central Google Scholar
De Monte, L. et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J. Exp. Med.208, 469–478 (2011). ArticleCASPubMedPubMed Central Google Scholar
DeNardo, D. G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell16, 91–102 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cao, W. et al. Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J. Exp. Med.206, 1603–1614 (2009). ArticleCASPubMedPubMed Central Google Scholar
Treilleux, I. et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin. Cancer Res.10, 7466–7474 (2004). ArticleCASPubMed Google Scholar
Coukos, G., Benencia, F., Buckanovich, R. J. & Conejo-Garcia, J. R. The role of dendritic cell precursors in tumour vasculogenesis. Br. J. Cancer92, 1182–1187 (2005). ArticleCASPubMedPubMed Central Google Scholar
Curiel, T. J. et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res.64, 5535–5538 (2004). ArticleCASPubMed Google Scholar
Heslop, H. E., Brenner, M. K. & Rooney, C. M. Donor T cells to treat EBV-associated lymphoma. N. Engl. J. Med.331, 679–680 (1994). ArticleCASPubMed Google Scholar
Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl Acad. Sci. USA99, 16168–16173 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298, 850–854 (2002). ArticleCASPubMedPubMed Central Google Scholar
Appay, V., Douek, D. C. & Price, D. A. CD8+ T cell efficacy in vaccination and disease. Nature Med.14, 623–628 (2008). An outstanding review that discusses the key features and requirements for effective anti-tumour CD8+ T cell-mediated immune responses. ArticleCASPubMed Google Scholar
Zhang, N. & Bevan, M. J. CD8+ T cells: foot soldiers of the immune system. Immunity35, 161–168 (2011). An outstanding review that discusses the key features of CD8+ T cell-mediated immune responses. ArticleCASPubMedPubMed Central Google Scholar
Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol.4, 579–585 (2003). ArticleCAS Google Scholar
Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell71, 1093–1102 (1992). ArticleCASPubMed Google Scholar
Shuford, W. W. et al. 4–1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med.186, 47–55 (1997). ArticleCASPubMedPubMed Central Google Scholar
Waldmann, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nature Rev. Immunol.6, 595–601 (2006). ArticleCAS Google Scholar
Pardoll, D. M. & Topalian, S. L. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol.10, 588–594 (1998). ArticleCASPubMed Google Scholar
Antony, P. A. et al. CD8+ T cell immunity against a tumor/self-antigen Is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol.174, 2591–2601 (2005). ArticleCASPubMed Google Scholar
Corthay, A. et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity22, 371–383 (2005). ArticleCASPubMed Google Scholar
Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med.207, 637–650 (2010). ArticleCASPubMedPubMed Central Google Scholar
Le Floc'h, A. et al. α E β 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J. Exp. Med.204, 559–570 (2007). ArticleCASPubMed Google Scholar
Roncarolo, M. G., Bacchetta, R., Bordignon, C., Narula, S. & Levings, M. K. Type 1 T regulatory cells. Immunol. Rev.182, 68–79 (2001). ArticleCASPubMed Google Scholar
Fukaura, H. et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-β1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J. Clin. Invest.98, 70–77 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kastenmuller, W. et al. Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J. Immunol.187, 3186–3197 (2011). ArticleCASPubMed Google Scholar
Sasaki, K., Pardee, A. D., Okada, H. & Storkus, W. J. IL-4 inhibits VLA-4 expression on Tc1 cells resulting in poor tumor infiltration and reduced therapy benefit. Eur. J. Immunol.38, 2865–2873 (2008). ArticleCASPubMedPubMed Central Google Scholar
Harlin, H. et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res.69, 3077–3085 (2009). ArticleCASPubMed Google Scholar
Vianello, F. et al. Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J. Immunol.176, 2902–2914 (2006). ArticleCASPubMed Google Scholar
Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol.9, 162–174 (2009). ArticleCAS Google Scholar
Menetrier-Caux, C., Gobert, M. & Caux, C. Differences in tumor regulatory T-cell localization and activation status impact patient outcome. Cancer Res.69, 7895–7898 (2009). ArticleCASPubMed Google Scholar
Higano, C. S. et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer115, 3670–3679 (2009). ArticleCASPubMed Google Scholar
Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363, 411–422 (2010). ArticleCASPubMed Google Scholar
Schwartzentruber, D. J. et al. A phase III multi-institutional randomized study of immunization with the gp100:209–217 (210M) peptide followed by high-dose IL-2 compared with high-dose IL-2 alone in patients with metastatic melanoma. J. Clin. Oncol. Abstr.27, CRA9011 (2009). Article Google Scholar
Schuster, S. J. et al. Idiotype vaccine therapy (BiovaxID) in follicular lymphoma in first complete remission: phase III clinical trial results. J. Clin. Oncol. Abstr.27, 2 (2009). Article Google Scholar
Kantoff, P. W. et al. Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol.28, 1099–1105 (2010). ArticleCASPubMedPubMed Central Google Scholar
Palucka, K., Ueno, H., Roberts, L., Fay, J. & Banchereau, J. Dendritic cells: are they clinically relevant? Cancer J.16, 318–324 (2010). ArticleCASPubMedPubMed Central Google Scholar
Draube, A. et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE6, e18801 (2011). ArticleCASPubMedPubMed Central Google Scholar
Parmiani, G., De Filippo, A., Novellino, L. & Castelli, C. Unique human tumor antigens: immunobiology and use in clinical trials. J. Immunol.178, 1975–1979 (2007). ArticleCASPubMed Google Scholar
Boon, T., Coulie, P. G., Van den Eynde, B. J. & van der Bruggen, P. Human T cell responses against melanoma. Annu. Rev. Immunol.24, 175–208 (2006). References 117–119 discuss the issue of tumour antigenicity. ArticleCASPubMed Google Scholar
Finn, O. J. Cancer vaccines: between the idea and the reality. Nature Rev. Immunol.3, 630–641 (2003). ArticleCAS Google Scholar
Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med.196, 1627–1638 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bonifaz, L. C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med.199, 815–824 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med.194, 769–780 (2001). References 122–124 describe the seminal work demonstrating DC targetingin vivowith specific antibodies that target DC surface receptors and the consequences on T cell-mediated immune responses. ArticleCASPubMedPubMed Central Google Scholar
Soares, H. et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med.204, 1095–1106 (2007). ArticleCASPubMedPubMed Central Google Scholar
Li, D. et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J. Exp. Med.209, 109–121 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schlom, J., Gulley, J. L. & Arlen, P. M. Paradigm shifts in cancer vaccine therapy. Exp. Biol. Med.233, 522–534 (2008). ArticleCAS Google Scholar
Paczesny, S. et al. Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med.199, 1503–1511 (2004). ArticleCASPubMedPubMed Central Google Scholar
Welters, M. J. et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc. Natl Acad. Sci. USA107, 11895–11899 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gaucher, D. et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med.205, 3119–3131 (2008). ArticleCASPubMedPubMed Central Google Scholar
Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunol.10, 116–125 (2009). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). An outstanding review that summarizes current concepts of cancer biology and for the first time incorporates inflammation and immune evasion into the paradigm of cancer–host interactions. ArticleCASPubMed Google Scholar
Zitvogel, L. et al. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin. Cancer Res.16, 3100–3104 (2010). ArticleCASPubMed Google Scholar
Ma, Y. et al. How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev.30, 71–82 (2011). ArticleCASPubMed Google Scholar
Taylor, C. et al. Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin. Cancer Res.13, 5133–5143 (2007). ArticleCASPubMed Google Scholar
Mitsunaga, M. et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nature Med.17, 1685–1691 (2011). ArticleCASPubMed Google Scholar
Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.19, 683–765 (2001). ArticleCASPubMed Google Scholar
Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol.1, 515–520 (2000). ArticleCAS Google Scholar
Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol.24, 99–146 (2005). ArticleCAS Google Scholar
Terabe, M. et al. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-β monoclonal antibody. Clin. Cancer Res.15, 6560–6569 (2009). ArticleCASPubMedPubMed Central Google Scholar
Peggs, K. S., Quezada, S. A., Korman, A. J. & Allison, J. P. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol.18, 206–213 (2006). ArticleCASPubMed Google Scholar
Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med.206, 1717–1725 (2009). ArticleCASPubMedPubMed Central Google Scholar
Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA99, 12293–12297 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gajewski, T. F. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin. Cancer Res.13, 5256–5261 (2007). ArticleCASPubMed Google Scholar
Hamanishi, J. et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA104, 3360–3365 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Rev. Immunol.4, 941–952 (2004). ArticleCAS Google Scholar
Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol.25, 267–296 (2007). ArticleCASPubMedPubMed Central Google Scholar
Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol.23, 23–68 (2005). ArticleCASPubMed Google Scholar
Maus, M. V. et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4–1BB. Nature Biotech.20, 143–148 (2002). ArticleCAS Google Scholar
Watanabe, N. et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature436, 1181–1185 (2005). ArticleCASPubMed Google Scholar
Manicassamy, S. et al. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science329, 849–853 (2010). ArticleCASPubMedPubMed Central Google Scholar
Murphy, G., Tjoa, B., Ragde, H., Kenny, G. & Boynton, A. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate29, 371–380 (1996). ArticleCASPubMed Google Scholar
Nestle, F. O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med.4, 328–332 (1998). ArticleCASPubMed Google Scholar
Holtl, L. et al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J. Urol.161, 777–782 (1999). ArticleCASPubMed Google Scholar
Yu, J. S. et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res.61, 842–847 (2001). CASPubMed Google Scholar
Reichardt, V. L. et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma: a feasibility study. Blood93, 2411–2419 (1999). ArticleCASPubMed Google Scholar
Timmerman, J. M. et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood99, 1517–1526 (2002). ArticleCASPubMed Google Scholar
Thurner, B. et al. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190, 1669–1678 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mackensen, A. et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Int. J. Cancer86, 385–392 (2000). ArticleCASPubMed Google Scholar
Banchereau, J. et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res.61, 6451–6458 (2001). CASPubMed Google Scholar
Fong, L. et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl Acad. Sci. USA98, 8809–8814 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193, 233–238 (2001). ArticleCASPubMedPubMed Central Google Scholar
Geiger, J. D. et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res.61, 8513–8519 (2001). CASPubMed Google Scholar
Schuler-Thurner, B. et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med.195, 1279–1288 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nair, S. K. et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg.235, 540–549 (2002). ArticlePubMedPubMed Central Google Scholar
Palucka, A. K. et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother.29, 545–557 (2006). ArticleCASPubMed Google Scholar
Salcedo, M. et al. Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol. Immunother.55, 819–829 (2006). ArticleCASPubMed Google Scholar
Chang, D. H. et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med.201, 1503–1517 (2005). ArticleCASPubMedPubMed Central Google Scholar
Aarntzen, E. H. et al. Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3′-fluoro-3′-deoxy-thymidine ([18F]FLT) PET imaging. Proc. Natl Acad. Sci. USA108, 18396–18399 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lesterhuis, W. J. et al. Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin. Cancer Res.17, 5725–5735 (2011). ArticleCASPubMed Google Scholar
Romano, E. et al. Peptide-loaded Langerhans cells, despite increased IL15 secretion and T-cell activation in vitro, elicit antitumor T-cell responses comparable to peptide-loaded monocyte-derived dendritic cells in vivo. Clin. Cancer Res.17, 1984–1997 (2011). ArticleCASPubMedPubMed Central Google Scholar
Okada, H. et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol.29, 330–336 (2011). ArticleCASPubMed Google Scholar