Unravelling cancer stem cell potential (original) (raw)
Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell132, 598–611 (2008). ArticleCASPubMedPubMed Central Google Scholar
Leblond, C. P., Clermont, Y. & Nadler, N. J. The pattern of stem cell renewal in three epithelia. (esophagus, intestine and testis). Proc. Can. Cancer Conf.7, 3–30 (1967). CASPubMed Google Scholar
Till, J. E. & McCulloch, E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res.14, 213–222 (1961). ArticleCASPubMed Google Scholar
Gallico, G. G. 3rd, O'Connor, N. E., Compton, C. C., Kehinde, O. & Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med.311, 448–451 (1984). ArticlePubMed Google Scholar
Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell6, 331–343 (1975). ArticleCASPubMed Google Scholar
Van Keymeulen, A. & Blanpain, C. Tracing epithelial stem cells during development, homeostasis, and repair. J. Cell Biol.197, 575–584 (2012). ArticleCASPubMedPubMed Central Google Scholar
Pierce, G. B. & Dixon, F. J. Jr. Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer12, 573–583 (1959). ArticleCASPubMed Google Scholar
Pierce, G. B. Jr, Dixon, F. J. Jr & Verney, E. L. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest.9, 583–602 (1960). PubMed Google Scholar
Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA84, 2302–2306 (1987). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, K., Rochat, A. & Barrandon, Y. Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc. Natl Acad. Sci. USA90, 7391–7395 (1993). ArticleCASPubMedPubMed Central Google Scholar
Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61, 1329–1337 (1990). ArticleCASPubMed Google Scholar
Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104, 233–245 (2001). ArticleCASPubMed Google Scholar
Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCASPubMed Google Scholar
Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotech.22, 411–417 (2004). ArticleCAS Google Scholar
Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet.40, 1291–1299 (2008). ArticleCASPubMed Google Scholar
Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255, 1707–1710 (1992). ArticleCASPubMed Google Scholar
Pastrana, E., Silva-Vargas, V. & Doetsch, F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell8, 486–498 (2011). ArticleCASPubMedPubMed Central Google Scholar
Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron36, 1021–1034 (2002). ArticleCASPubMed Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature459, 262–265 (2009). ArticleCASPubMed Google Scholar
Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell6, 25–36 (2010). ArticleCASPubMed Google Scholar
Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469, 415–418.
Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nature Med.17, 1225–1227 (2011). ArticleCASPubMed Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). ArticleCASPubMed Google Scholar
Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007). ArticleCASPubMed Google Scholar
Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65, 5506–5511 (2005). ArticleCASPubMed Google Scholar
Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65, 10946–10951 (2005). ArticleCASPubMed Google Scholar
Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.15, 504–514 (2008). ArticleCASPubMed Google Scholar
Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res.68, 4311–4320 (2008). ArticleCASPubMedPubMed Central Google Scholar
Barrett, L. E. et al. Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell21, 11–24 (2012). ArticleCASPubMed Google Scholar
Schroeder, T. Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior. Cell Stem Cell6, 203–207 (2010). ArticleCASPubMed Google Scholar
Purton, L. E. & Scadden, D. T. Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell1, 263–270 (2007). ArticleCASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med.3, 730–737 (1997). ArticleCASPubMed Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994). ArticleCASPubMed Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). ArticleCASPubMedPubMed Central Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). ArticleCASPubMed Google Scholar
Vermeulen, L. et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl Acad. Sci. USA105, 13427–13432 (2008). ArticlePubMedPubMed Central Google Scholar
Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature452, 650–653 (2008). ArticleCASPubMed Google Scholar
Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA104, 973–978 (2007). ArticleCASPubMedPubMed Central Google Scholar
Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res.67, 1030–1037 (2007). ArticleCASPubMed Google Scholar
Curley, M. D. et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells27, 2875–2883 (2009). CASPubMed Google Scholar
Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nature Rev. Cancer12, 767–775 (2012). ArticleCAS Google Scholar
Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature466, 133–137 (2010). ArticleCASPubMedPubMed Central Google Scholar
Luo, Y. et al. ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells30, 2100–2113 (2012). ArticleCASPubMedPubMed Central Google Scholar
Civenni, G. et al. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res.71, 3098–3109 (2011). ArticleCASPubMed Google Scholar
Lapouge, G. et al. Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness. EMBO J.31, 4563–4575 (2012). ArticleCASPubMedPubMed Central Google Scholar
Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature469, 356–361 (2011). ArticleCASPubMed Google Scholar
Notta, F. et al. Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature469, 362–367 (2011). ArticleCASPubMed Google Scholar
Clappier, E. et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J. Exp. Med.208, 653–661 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science339, 543–548 (2013). ArticleCASPubMed Google Scholar
Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nature Biotech.29, 1120–1127 (2011). ArticleCAS Google Scholar
Schober, M. & Fuchs, E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proc. Natl Acad. Sci. USA108, 10544–10549 (2011). ArticlePubMedPubMed Central Google Scholar
Curtis, S. J. et al. Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell7, 127–133 (2010). ArticleCASPubMedPubMed Central Google Scholar
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature449, 1003–1007 (2007). ArticleCASPubMed Google Scholar
Mascre, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature489, 257–262 (2012). ArticleCASPubMed Google Scholar
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell143, 134–144 (2010). ArticleCASPubMed Google Scholar
Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature446, 185–189 (2007). ArticleCASPubMed Google Scholar
Doupe, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science337, 1091–1093.
Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature488, 527–530 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science337, 730–735 (2012). ArticleCASPubMed Google Scholar
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature457, 608–611 (2009). ArticleCASPubMed Google Scholar
Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet.40, 915–920 (2008). ArticleCASPubMed Google Scholar
Zhu, L. et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature457, 603–607 (2009). ArticleCASPubMed Google Scholar
Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell111, 251–263 (2002). ArticleCASPubMed Google Scholar
Merlos-Suarez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell8, 511–524 (2011). ArticleCASPubMed Google Scholar
Kemper, K. et al. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells30, 2378–2386 (2012). ArticleCASPubMed Google Scholar
Gerbe, F., Brulin, B., Makrini, L., Legraverend, C. & Jay, P. DCAMKL-1 expression identifies Tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology137, 2179–2181 (2009). ArticleCASPubMed Google Scholar
Nakanishi, Y. et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nature Genet.45, 98–103 (2012). ArticleCASPubMed Google Scholar
Zomer, A. et al. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells31, 602–606 (2013). ArticleCASPubMed Google Scholar
Grosse-Gehling, P. et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J. Pathol.229, 355–378 (2013). ArticleCASPubMed Google Scholar
Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet.19, 379–383 (1998). ArticleCASPubMed Google Scholar
van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002). ArticleCASPubMed Google Scholar
Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science275, 1784–1787 (1997). ArticleCASPubMed Google Scholar
Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science275, 1787–1790 (1997). ArticleCASPubMed Google Scholar
Youssef, K. K. et al. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nature Cell Biol.14, 1282–1294 (2012). ArticleCASPubMed Google Scholar
Yang, S. H. et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/β3-catenin signaling. Nature Genet.40, 1130–1135 (2008). ArticleCASPubMed Google Scholar
Spike, B. T. et al. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell10, 183–197 (2012). ArticleCASPubMedPubMed Central Google Scholar
Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science338, 1080–1084 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell152, 25–38 (2013). ArticleCASPubMed Google Scholar
Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med.11, 1351–1354 (2005). ArticleCASPubMed Google Scholar
Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature439, 84–88 (2006). ArticleCASPubMed Google Scholar
Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature439, 993–997 (2006). ArticleCASPubMed Google Scholar
Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature479, 189–193 (2011). ArticleCASPubMed Google Scholar
Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D. & Witte, O. N. Isolation and functional characterization of murine prostate stem cells. Proc. Natl Acad. Sci. USA104, 181–186 (2007). ArticleCASPubMed Google Scholar
Ousset, M. et al. Multipotent and unipotent progenitors contribute to prostate postnatal development. Nature Cell Biol.14, 1131–1138 (2012). ArticleCASPubMed Google Scholar
Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation72, 548–557 (2004). ArticlePubMed Google Scholar
Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature495, 65–69 (2013). ArticleCASPubMed Google Scholar
van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biol.14, 1099–1104 (2012). ArticleCASPubMed Google Scholar
Quintana, E. et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell18, 510–523 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fillmore, C. M. & Kuperwasser, C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res.10, R25 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell146, 633–644 (2011). ArticleCASPubMed Google Scholar
Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410, 50–56 (2001). ArticleCASPubMed Google Scholar
Li, Y. M. et al. Upregulation of CXCR4 is essential for _HER2_-mediated tumor metastasis. Cancer Cell6, 459–469 (2004). ArticleCASPubMed Google Scholar
Taichman, R. S. et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res.62, 1832–1837 (2002). CASPubMed Google Scholar
Kim, M. et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res.70, 10411–10421 (2010). ArticleCASPubMed Google Scholar
Ramsey, D. M. & McAlpine, S. R. Halting metastasis through CXCR4 inhibition. Bioorg. Med. Chem. Lett.23, 20–25 (2013). ArticleCASPubMed Google Scholar
Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell1, 313–323 (2007). ArticleCASPubMed Google Scholar
Pang, R. et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell6, 603–615 (2010). ArticleCASPubMed Google Scholar
Dieter, S. M. et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell9, 357–365 (2011). ArticleCASPubMed Google Scholar
Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell116, 769–778 (2004). ArticleCASPubMed Google Scholar
Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells4, 7–25 (1978). CASPubMed Google Scholar
Spradling, A., Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature414, 98–104 (2001). ArticleCASPubMed Google Scholar
Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol.425, 479–494 (2000). ArticleCASPubMed Google Scholar
Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science304, 1338–1340 (2004). ArticleCASPubMed Google Scholar
Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell3, 289–300 (2008). ArticleCASPubMedPubMed Central Google Scholar
Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell11, 69–82 (2007). ArticleCASPubMed Google Scholar
Beck, B. et al. A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature478, 399–403 (2011). CASPubMed Google Scholar
Hamerlik, P. et al. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med.209, 507–520 (2012). ArticleCASPubMedPubMed Central Google Scholar
Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell6, 251–264 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). ArticleCASPubMed Google Scholar
Chow, D. C., Wenning, L. A., Miller, W. M. & Papoutsakis, E. T. Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh's model. Biophys. J.81, 675–684 (2001). ArticleCASPubMedPubMed Central Google Scholar
Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R. & Down, J. D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl Acad. Sci. USA104, 5431–5436 (2007). ArticleCASPubMedPubMed Central Google Scholar
Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell7, 391–402 (2010). ArticleCASPubMed Google Scholar
Wang, Y., Liu, Y., Malek, S. N., Zheng, P. & Liu, Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell8, 399–411 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H., Li, H., Xi, H. S. & Li, S. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood119, 2595–2607 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bar, E. E., Lin, A., Mahairaki, V., Matsui, W. & Eberhart, C. G. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am. J. Pathol.177, 1491–1502 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hashimoto, O. et al. Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1α-dependent manner in pancreatic cancer cells. Pathobiology78, 181–192 (2011). ArticleCASPubMed Google Scholar
Soeda, A. et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene28, 3949–3959 (2009). ArticleCASPubMed Google Scholar
Schwab, L. P. et al. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res.14, R6 (2012). ArticleCASPubMedPubMed Central Google Scholar
Harrison, H. et al. Contrasting hypoxic effects on breast cancer stem cell hierarchy is dependent on ER-α status. Cancer Res.73, 1420–1433 (2013). ArticleCASPubMed Google Scholar
Kuschel, A., Simon, P. & Tug, S. Functional regulation of HIF-1α under normoxia—is there more than post-translational regulation? J. Cell. Physiol.227, 514–524 (2012). ArticleCASPubMed Google Scholar
Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Rev. Drug Discov.10, 417–427 (2011). ArticleCAS Google Scholar
Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature481, 85–89 (2012). ArticleCAS Google Scholar
Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biol.12, 468–476 (2010). ArticleCASPubMed Google Scholar
Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell22, 571–584 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell7, 174–185 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sotiropoulou, P. A. et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biol.12, 572–582 (2010). ArticleCASPubMed Google Scholar
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006). ArticleCASPubMed Google Scholar
de The, H. & Chen, Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nature Rev. Cancer10, 775–783 (2010). ArticleCAS Google Scholar
Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature444, 761–765 (2006). ArticleCASPubMed Google Scholar
Sachlos, E. et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell149, 1284–1297 (2012). ArticleCASPubMed Google Scholar
Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood115, 2610–2618 (2010). ArticleCASPubMed Google Scholar
Lu, R., Neff, N. F., Quake, S. R. & Weissman, I. L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nature Biotech.29, 928–933 (2011). ArticleCAS Google Scholar
Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell139, 871–890 (2009). ArticleCASPubMed Google Scholar
Fernandes, K. J. et al. A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biol.6, 1082–1093 (2004). ArticleCASPubMed Google Scholar
Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biol.3, 778–784 (2001). ArticleCASPubMed Google Scholar
Hollier, B. G. et al. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res.73, 1981–1992 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z. et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res.69, 2400–2407 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fan, F. et al. Overexpression of Snail induces epithelial–mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med.1, 5–16 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, Z. F. & Behringer, R. R. Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev.9, 686–699 (1995). ArticleCASPubMed Google Scholar
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117, 927–939 (2004). ArticleCASPubMed Google Scholar
Taube, J. H. et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Natl Acad. Sci. USA107, 15449–15454 (2010). ArticlePubMedPubMed Central Google Scholar
Ansieau, S. et al. Induction of EMT by Twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell14, 79–89 (2008). ArticleCASPubMed Google Scholar
Yang, M. H. et al. Bmi1 is essential in _Twist1_-induced epithelial–mesenchymal transition. Nature Cell Biol.12, 982–992 (2010). ArticleCASPubMed Google Scholar
Dhawan, S., Tschen, S. I. & Bhushan, A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic β-cell proliferation. Genes Dev.23, 906–911 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene _bmi_-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 (1999). ArticleCASPubMed Google Scholar
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423, 255–260 (2003). ArticleCASPubMed Google Scholar
Molofsky, A. V., He, S., Bydon, M., Morrison, S. J. & Pardal, R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev.19, 1432–1437 (2005). ArticleCASPubMedPubMed Central Google Scholar