Therapeutic application of histone deacetylase inhibitors for central nervous system disorders (original) (raw)
Hardy, J. & Orr, H. The genetics of neurodegenerative diseases. J. Neurochem.97, 1690–1699 (2006). ArticleCASPubMed Google Scholar
Coppede, F., Mancuso, M., Siciliano, G., Migliore, L. & Murri, L. Genes and the environment in neurodegeneration. Biosci. Rep.26, 341–367 (2006). ArticleCASPubMed Google Scholar
Dosunmu, R., Wu, J., Basha, M. R. & Zawia, N. H. Environmental and dietary risk factors in Alzheimer's disease. Expert Rev. Neurother.7, 887–900 (2007). ArticleCASPubMed Google Scholar
Krichmar, J. L. & Edelman, G. M. Brain-based devices for the study of nervous systems and the development of intelligent machines. Artif. Life11, 63–77 (2005). ArticlePubMed Google Scholar
Broderick, D. F. Neuroimaging in neuropsychiatry. Psychiatr. Clin. North Am.28, 549–566 (2005). ArticlePubMed Google Scholar
Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. Nature432, 855–861 (2004). ArticleCASPubMed Google Scholar
Davie, J. R. & Spencer, V. A. Control of histone modifications. J. Cell. Biochem.75 (Suppl. 32), 141–148 (1999). Article Google Scholar
Langley, B., Gensert, J. M., Beal, M. F. & Ratan, R. R. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord.4, 41–50 (2005). ArticleCASPubMed Google Scholar
Bhaumik, S. R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nature Struct. Mol. Biol.14, 1008–1016 (2007). ArticleCAS Google Scholar
Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature417, 455–458 (2002). ArticleCASPubMed Google Scholar
Michan, S. & Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem. J.404, 1–13 (2007). ArticleCASPubMed Google Scholar
Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell23, 607–618 (2006). ArticleCASPubMed Google Scholar
Gregoire, S. et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol. Cell. Biol.27, 1280–1295 (2007). ArticleCASPubMed Google Scholar
Kruhlak, M. J. et al. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem.276, 38307–38319 (2001). ArticleCASPubMed Google Scholar
Neely, K. E. & Workman, J. L. The complexity of chromatin remodeling and its links to cancer. Biochim. Biophys. Acta1603, 19–29 (2002). CASPubMed Google Scholar
Sun, J. M., Spencer, V. A., Chen, H. Y., Li, L. & Davie, J. R. Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation. Methods31, 12–23 (2003). ArticleCASPubMed Google Scholar
Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nature Rev. Drug Discov.5, 769–784 (2006). ArticleCAS Google Scholar
Gregoretti, I. V., Lee, Y. M. & Goodson, H. V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol.338, 17–31 (2004). ArticleCASPubMed Google Scholar
Xu, W. S., Parmigiani, R. B. & Marks, P. A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene26, 5541–5552 (2007). ArticleCASPubMed Google Scholar
Marsoni, S., Damia, G. & Camboni, G. A work in progress: the clinical development of histone deacetylase inhibitors. Epigenetics3, 164–171 (2008). ArticlePubMed Google Scholar
Abel, T. & Zukin, R. S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol.8, 57–64 (2008). ArticleCASPubMedPubMed Central Google Scholar
Morrison, B. E., Majdzadeh, N. & D'Mello, S. R. Histone deacetylases: focus on the nervous system. Cell. Mol. Life Sci.64, 2258–2269 (2007). ArticleCASPubMed Google Scholar
Hahnen, E. et al. Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin. Investig. Drugs17, 169–184 (2008). ArticleCASPubMed Google Scholar
Butler, R. & Bates, G. P. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nature Rev. Neurosci.7, 784–796 (2006). ArticleCAS Google Scholar
Thiagalingam, S. et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann. NY Acad. Sci.983, 84–100 (2003). ArticleCASPubMed Google Scholar
Wang, S., Yan-Neale, Y., Zeremski, M. & Cohen, D. Transcription regulation by histone deacetylases. Novartis Found. Symp.259, 238–245 (2004). CASPubMed Google Scholar
Yang, W. M., Tsai, S. C., Wen, Y. D., Fejer, G. & Seto, E. Functional domains of histone deacetylase-3. J. Biol. Chem.277, 9447–9454 (2002). ArticleCASPubMed Google Scholar
Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell89, 349–356 (1997). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.13, 1924–1935 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wen, Y. D. et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl Acad. Sci. USA97, 7202–7207 (2000). ArticleCASPubMedPubMed Central Google Scholar
Martin, M., Kettmann, R. & Dequiedt, F. Class IIa histone deacetylases: regulating the regulators. Oncogene26, 5450–5467 (2007). ArticleCASPubMed Google Scholar
Majdzadeh, N., Morrison, B. E. & D'Mello, S. R. Class IIA HDACs in the regulation of neurodegeneration. Front. Biosci.13, 1072–1082 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhang, C. L., McKinsey, T. A. & Olson, E. N. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol. Cell. Biol.22, 7302–7312 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fischle, W. et al. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J. Biol. Chem.276, 35826–35835 (2001). ArticleCASPubMed Google Scholar
Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA104, 17335–17340 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jones, P. et al. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg. Med. Chem. Lett.18, 1814–1819 (2008). ArticleCASPubMed Google Scholar
Wang, A. H. & Yang, X. J. Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol. Cell. Biol.21, 5992–6005 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bertos, N. R., Wang, A. H. & Yang, X. J. Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol.79, 243–252 (2001). ArticleCASPubMed Google Scholar
Zhang, C. L., McKinsey, T. A. & Olson, E. N. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc. Natl Acad. Sci. USA98, 7354–7359 (2001). ArticleCASPubMedPubMed Central Google Scholar
Petrie, K. et al. The histone deacetylase 9 gene encodes multiple protein isoforms. J. Biol. Chem.278, 16059–16072 (2003). ArticleCASPubMed Google Scholar
Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl Acad. Sci. USA97, 7835–7840 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kao, H. Y. et al. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J. Biol. Chem.276, 47496–47507 (2001). ArticleCASPubMed Google Scholar
Ellis, J. J. et al. CaM kinase IIdeltaC phosphorylation of 14-3-3β in vascular smooth muscle cells: activation of class II HDAC repression. Mol. Cell Biochem.242, 153–161 (2003). ArticleCASPubMed Google Scholar
Tong, J. J., Liu, J., Bertos, N. R. & Yang, X. J. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res.30, 1114–1123 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gao, L., Cueto, M. A., Asselbergs, F. & Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem.277, 25748–25755 (2002). ArticleCASPubMed Google Scholar
Liu, H., Hu, Q., Kaufman, A., D'Ercole, A. J. & Ye, P. Developmental expression of histone deacetylase 11 in the murine brain. J. Neurosci. Res.86, 537–543 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sauve, A. A., Wolberger, C., Schramm, V. L. & Boeke, J. D. The biochemistry of sirtuins. Annu. Rev. Biochem.75, 435–465 (2006). ArticleCASPubMed Google Scholar
North, B. J., Schwer, B., Ahuja, N., Marshall, B. & Verdin, E. Preparation of enzymatically active recombinant class III protein deacetylases. Methods36, 338–345 (2005). ArticleCASPubMed Google Scholar
Denu, J. M. The Sir 2 family of protein deacetylases. Curr. Opin. Chem. Biol.9, 431–440 (2005). ArticleCASPubMed Google Scholar
Vaquero, A. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell16, 93–105 (2004). ArticleCASPubMed Google Scholar
Senawong, T., Peterson, V. J. & Leid, M. BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression. Arch. Biochem. Biophys.434, 316–325 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem.282, 6823–6832 (2007). ArticleCASPubMed Google Scholar
North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell11, 437–444 (2003). ArticleCASPubMed Google Scholar
Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A. & Gow, A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res.32, 187–195 (2007). ArticleCASPubMed Google Scholar
Vaquero, A. et al. SirT2 is a histone deacetylase with preference for histone H4 Lys16 during mitosis. Genes Dev.20, 1256–1261 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schwer, B., North, B. J., Frye, R. A., Ott, M. & Verdin, E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol.158, 647–657 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA103, 10224–10229 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA103, 10230–10235 (2006). ArticleCASPubMedPubMed Central Google Scholar
Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell16, 4623–4635 (2005). ArticleCASPubMedPubMed Central Google Scholar
Broide, R. S. et al. Distribution of histone deacetylases 1–11 in the rat brain. J. Mol. Neurosci.31, 47–58 (2007). ArticleCASPubMed Google Scholar
Lu, J., McKinsey, T. A., Zhang, C. L. & Olson, E. N. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell6, 233–244 (2000). ArticleCASPubMed Google Scholar
Zhang, C. L., McKinsey, T. A., Lu, J. R. & Olson, E. N. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J. Biol. Chem.276, 35–39 (2001). ArticleCASPubMed Google Scholar
Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M. E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science286, 785–790 (1999). ArticleCASPubMed Google Scholar
Zhou, X., Richon, V. M., Rifkind, R. A. & Marks, P. A. Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc. Natl Acad. Sci. USA97, 1056–1061 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chawla, S., Vanhoutte, P., Arnold, F. J., Huang, C. L. & Bading, H. Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem.85, 151–159 (2003). ArticleCASPubMed Google Scholar
Belfield, J. L., Whittaker, C., Cader, M. Z. & Chawla, S. Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and cAMP-response element-binding protein in hippocampal neurons. J. Biol. Chem.281, 27724–27732 (2006). ArticleCASPubMed Google Scholar
Bolger, T. A. & Yao, T. P. Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J. Neurosci.25, 9544–9553 (2005). ArticleCASPubMedPubMed Central Google Scholar
Berdeaux, R. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Med.13, 597–603 (2007). ArticleCASPubMed Google Scholar
Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell115, 727–738 (2003). This provided a new role for HDAC6 that led to work by Kopito and others to show that HDAC6 and microtubules are involved in the clearance of protein aggregates in neurodegenerative disease (J. Biol Chem.280, 40282–40292; 2005). ArticleCASPubMed Google Scholar
Iwata, A., Riley, B. E., Johnston, J. A. & Kopito, R. R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem.280, 40282–40292 (2005). ArticleCASPubMed Google Scholar
Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature447, 859–863 (2007). ArticleCASPubMed Google Scholar
Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell18, 601–607 (2005). ArticleCASPubMed Google Scholar
Murphy, P. J., Morishima, Y., Kovacs, J. J., Yao, T. P. & Pratt, W. B. Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem.280, 33792–33799 (2005). ArticleCASPubMed Google Scholar
Li, W. et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J. Neurosci.27, 2606–2616 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, D. & Guarente, L. SIR2: a potential target for calorie restriction mimetics. Trends Mol. Med.13, 64–71 (2007). ArticleCASPubMed Google Scholar
Bishop, N. A. & Guarente, L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Rev. Genet.8, 835–844 (2007). ArticleCASPubMed Google Scholar
Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett.556, 281–286 (2004). ArticleCASPubMed Google Scholar
Milne, J. C. & Denu, J. M. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr. Opin. Chem. Biol.12, 11–17 (2008). ArticleCASPubMed Google Scholar
Outeiro, T. F., Marques, O. & Kazantsev, A. Therapeutic role of sirtuins in neurodegenerative disease. Biochim. Biophys. Acta1782, 363–369 (2008). ArticleCASPubMed Google Scholar
Petrij, F. et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature376, 348–351 (1995). ArticleCASPubMed Google Scholar
Oike, Y. et al. Truncated CBP protein leads to classical Rubinstein–Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum. Mol. Genet.8, 387–396 (1999). ArticleCASPubMed Google Scholar
Alarcon, J. M. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron42, 947–959 (2004). ArticleCASPubMed Google Scholar
Barco, A. The Rubinstein–Taybi syndrome: modeling mental impairment in the mouse. Genes Brain Behav.6 (Suppl. 1), 32–39 (2007). ArticleCASPubMed Google Scholar
Vecsey, C. G. et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci.27, 6128–6140 (2007). This important paper demonstrates the effects of HDAC inhibitors on restoration of memory loss by enhancing transcriptional expression of specific neuronal genes and suggests benefits of HDAC treatment for Rubinstein–Taybi syndrome. ArticleCASPubMedPubMed Central Google Scholar
Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci.8, 355–367 (2007). ArticleCAS Google Scholar
Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neurosci.9, 519–525 (2006). This paper providesin vivoevidence of therapeutic application HDAC inhibitors for the treatment of depression by a chromatin remodelling mechanism. ArticleCASPubMed Google Scholar
Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry62, 55–64 (2007). ArticleCASPubMed Google Scholar
Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature447, 178–182 (2007). ArticleCASPubMed Google Scholar
Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet.23, 185–188 (1999). A landmark paper linking epigenetic regulation and pathology in Rett syndrome, paving the way for the potential therapeutic application of HDAC inhibitors for treating of this human disorder. ArticleCASPubMed Google Scholar
Chahrour, M. & Zoghbi, H. Y. The story of Rett syndrome: from clinic to neurobiology. Neuron56, 422–437 (2007). ArticleCASPubMed Google Scholar
LaSalle, J. M. The odyssey of MeCP2 and parental imprinting. Epigenetics2, 5–10 (2007). ArticlePubMed Google Scholar
Pandolfo, M. Friedreich's ataxia: clinical aspects and pathogenesis. Semin. Neurol.19, 311–321 (1999). ArticleCASPubMed Google Scholar
Herman, D. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nature Chem. Biol.2, 551–558 (2006). This paper shows the efficacious effect of a benzamide-based HDAC inhibitor on heterochromatin-mediated repression, resulting in transcriptional reactivation of silenced frataxin gene product in Friedreich's ataxia. ArticleCAS Google Scholar
O'Donnell, W. T. & Warren, S. T. A decade of molecular studies of fragile X syndrome. Annu. Rev. Neurosci.25, 315–338 (2002). ArticleCASPubMed Google Scholar
Garber, K., Smith, K. T., Reines, D. & Warren, S. T. Transcription, translation and fragile X syndrome. Curr. Opin. Genet. Dev.16, 270–275 (2006). ArticleCASPubMed Google Scholar
Chandler, S. P., Kansagra, P. & Hirst, M. C. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect. BMC Mol. Biol.4, 3 (2003). ArticlePubMedPubMed Central Google Scholar
Chiurazzi, P. et al. Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum. Mol. Genet.8, 2317–2323 (1999). ArticleCASPubMed Google Scholar
Pietrobono, R. et al. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res.30, 3278–3285 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tabolacci, E. et al. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. Eur. J. Hum. Genet.13, 641–648 (2005). ArticleCASPubMed Google Scholar
Biacsi, R., Kumari, D. & Usdin, K. SIRT1 inhibition alleviates gene silencing in fragile X mental retardation syndrome. PLoS Genet.4, e1000017 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Vaquero, A. et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature450, 440–444 (2007). ArticleCASPubMed Google Scholar
Avila, A. M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest.117, 659–671 (2007). ArticleCASPubMedPubMed Central Google Scholar
Riessland, M., Brichta, L., Hahnen, E. & Wirth, B. The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum. Genet.120, 101–110 (2006). ArticleCASPubMed Google Scholar
Hirtz, D. et al. Challenges and opportunities in clinical trials for spinal muscular atrophy. Neurology65, 1352–1357 (2005). ArticleCASPubMed Google Scholar
Kernochan, L. E. et al. The role of histone acetylation in SMN gene expression. Hum. Mol. Genet.14, 1171–1182 (2005). ArticleCASPubMed Google Scholar
Hahnen, E. et al. In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J. Neurochem.98, 193–202 (2006). ArticleCASPubMed Google Scholar
Ryu, H. et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J. Neurochem.93, 1087–1098 (2005). ArticleCASPubMed Google Scholar
Rouaux, C. et al. Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J. Neurosci.27, 5535–5545 (2007). ArticleCASPubMedPubMed Central Google Scholar
Minamiyama, M. et al. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet.13, 1183–1192 (2004). ArticleCASPubMed Google Scholar
Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci.30, 575–621 (2007). ArticleCASPubMed Google Scholar
Steffan, J. S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA97, 6763–6768 (2000). ArticleCASPubMedPubMed Central Google Scholar
Luthi-Carter, R. et al. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. Hum. Mol. Genet.11, 1927–1937 (2002). ArticleCASPubMed Google Scholar
Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genet.35, 76–83 (2003). ArticleCASPubMed Google Scholar
Serra, H. G. et al. Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum. Mol. Genet.13, 2535–2543 (2004). ArticleCASPubMed Google Scholar
Tsai, C. C. et al. Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc. Natl Acad. Sci. USA101, 4047–4052 (2004). ArticleCASPubMedPubMed Central Google Scholar
Helmlinger, D., Tora, L. & Devys, D. Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet.22, 562–570 (2006). ArticleCASPubMed Google Scholar
Nakamura, K. et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet.10, 1441–1448 (2001). ArticleCASPubMed Google Scholar
La Spada, A. R., Wilson, E. M., Lubahn, D.B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature352, 77–79 (1991). ArticleCASPubMed Google Scholar
Helmlinger, D. et al. Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum. Mol. Genet.13, 1257–1265 (2004). ArticleCASPubMed Google Scholar
Evert, B. O. et al. Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J. Neurosci.26, 11474–11486 (2006). ArticleCASPubMedPubMed Central Google Scholar
Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature413, 739–743 (2001). This demonstrated for the first time efficacy of HDAC inhibitors in neurodegeneration models. ArticleCASPubMed Google Scholar
Hockly, E. et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA100, 2041–2046 (2003). This paper showed the benefits of a HDAC inhibitor (voronistat) in a mouse model of neurodegeneration. ArticleCASPubMedPubMed Central Google Scholar
Ferrante, R. J. et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci.23, 9418–9427 (2003). ArticleCASPubMedPubMed Central Google Scholar
Thomas, E. A. et al. The histone deacetylase inhibitor, HDACi 4b, ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc. Natl Acad. Sci. USA (in the press).
Sadri-Vakili, G. & Cha, J. H. Histone deacetylase inhibitors: a novel therapeutic approach to Huntington's disease (complex mechanism of neuronal death). Curr. Alzheimer Res.3, 403–408 (2006). ArticleCASPubMed Google Scholar
Bates, E. A., Victor, M., Jones, A. K., Shi, Y. & Hart, A. C. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci.26, 2830–2838 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pallos, J. et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 1 Sep 2008 (doi:10.1093/hmg/ddn273). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Funez, P. et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature408, 101–106 (2000). ArticleCASPubMed Google Scholar
Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet.37, 349–350 (2005). This paper provides genetic and pharmacological evidence relating to possible the protective effects of SIRT1 activation inin vivoneurodegeneration models. ArticleCASPubMed Google Scholar
Shao, J. & Diamond, M. I. Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum. Mol. Genet.16 (Spec. No. 2), R115–R123 (2007). ArticleCASPubMed Google Scholar
Imarisio, S. et al. Huntington's disease: from pathology and genetics to potential therapies. Biochem. J.412, 191–209 (2008). ArticleCASPubMed Google Scholar
Ross, C. A. & Thompson, L. M. Transcription meets metabolism in neurodegeneration. Nature Med.12, 1239–1241 (2006). ArticleCASPubMed Google Scholar
Kazantsev, A. G. & Hersch, S. M. Drug targeting of dysregulated transcription in Huntington's disease. Prog. Neurobiol.83, 249–259 (2007). ArticleCASPubMedPubMed Central Google Scholar
Oliveira, J. M. et al. Mitochondrial-dependent Ca2+ handling in Huntington's disease striatal cells: effect of histone deacetylase inhibitors. J. Neurosci.26, 11174–11186 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci.27, 3571–3583 (2007). ArticleCASPubMedPubMed Central Google Scholar
Berke, S. J. & Paulson, H. L. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr. Opin. Genet. Dev.13, 253–261 (2003). ArticleCASPubMed Google Scholar
Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci.26, 267–298 (2003). ArticleCASPubMed Google Scholar
Rubinsztein, D. C. et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy1, 11–22 (2005). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol. Cell. Biol.28, 1688–1701 (2008). ArticleCASPubMedPubMed Central Google Scholar
Outeiro, T. F. et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease. Science317, 516–519 (2007). Provides evidence regarding the feasibility of a novel treatment approach for neurodegeneration using selective inhibitors of SIRT2. ArticleCASPubMed Google Scholar
Raine, C. S. Multiple sclerosis: immune system molecule expression in the central nervous system. J. Neuropathol. Exp. Neurol.53, 328–337 (1994). ArticleCASPubMed Google Scholar
McFarland, H. F. & Martin, R. Multiple sclerosis: a complicated picture of autoimmunity. Nature Immunol.8, 913–919 (2007). ArticleCAS Google Scholar
Dheen, S. T., Kaur, C. & Ling, E. A. Microglial activation and its implications in the brain diseases. Curr. Med. Chem.14, 1189–1197 (2007). ArticleCASPubMed Google Scholar
Camelo, S. et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol.164, 10–21 (2005). ArticleCASPubMed Google Scholar
Gray, S. G. & Dangond, F. Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis. Epigenetics1, 67–75 (2006). ArticlePubMed Google Scholar
Ren, M., Leng, Y., Jeong, M., Leeds, P. R. & Chuang, D. M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem.89, 1358–1367 (2004). ArticleCASPubMed Google Scholar
Faraco, G. et al. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol. Pharmacol.70, 1876–1884 (2006). ArticleCASPubMed Google Scholar
Kim, H. J. et al. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther.321, 892–901 (2007). ArticleCASPubMed Google Scholar
Langley, B. et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21waf1/cip1 in cell cycle-independent neuroprotection. J. Neurosci.28, 163–176 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chuang, D. M. The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann. NY Acad. Sci.1053, 195–204 (2005). ArticleCASPubMed Google Scholar
Giorgini, F. et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J. Biol. Chem.283, 7390–7400 (2008). ArticleCASPubMed Google Scholar
Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science261, 921–923 (1993). ArticleCASPubMed Google Scholar
Nixon, R. A. Niemann–Pick type C disease and Alzheimer's disease: the APP-endosome connection fattens up. Am. J. Pathol.164, 757–761 (2004). ArticlePubMedPubMed Central Google Scholar
Hooper, N. M. Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem. Soc. Trans.33, 335–338 (2005). ArticleCASPubMed Google Scholar
Roff, C. F. et al. Type C Niemann–Pick disease: use of hydrophobic amines to study defective cholesterol transport. Dev. Neurosci.13, 315–319 (1991). ArticleCASPubMed Google Scholar
Vance, J. E. Lipid imbalance in the neurological disorder, Niemann–Pick C disease. FEBS Lett.580, 5518–5524 (2006). ArticleCASPubMed Google Scholar
Garver, W. S. & Heidenreich, R. A. The Niemann–Pick C proteins and trafficking of cholesterol through the late endosomal/lysosomal system. Curr. Mol. Med.2, 485–505 (2002). ArticleCASPubMed Google Scholar
Mukherjee, S. & Maxfield, F. R. Lipid and cholesterol trafficking in NPC. Biochim. Biophys. Acta1685, 28–37 (2004). ArticleCASPubMed Google Scholar
Karten, B., Vance, D. E., Campenot, R. B. & Vance, J. E. Cholesterol accumulates in cell bodies, but is decreased in distal axons, of Niemann–Pick C1-deficient neurons. J. Neurochem.83, 1154–1163 (2002). ArticleCASPubMed Google Scholar
Karten, B., Vance, D. E., Campenot, R. B. & Vance, J. E. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons. J. Biol. Chem.278, 4168–4175 (2003). ArticleCASPubMed Google Scholar
Kim, S. J., Lee, B. H., Lee, Y. S. & Kang, K. S. Defective cholesterol traffic and neuronal differentiation in neural stem cells of Niemann–Pick type C disease improved by valproic acid, a histone deacetylase inhibitor. Biochem. Biophys. Res. Commun.360, 593–599 (2007). ArticleCASPubMed Google Scholar
Li, X. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell28, 91–106 (2007). ArticlePubMedCAS Google Scholar
Valenza, M. et al. Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum. Mol. Genet.16, 2187–2198 (2007). ArticleCASPubMed Google Scholar
Valenza, M. et al. Progressive dysfunction of the cholesterol biosynthesis pathway in the R6/2 mouse model of Huntington's disease. Neurobiol. Dis.28, 133–142 (2007). ArticleCASPubMed Google Scholar
Trushina, E. et al. Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Hum. Mol. Genet.15, 3578–3591 (2006). ArticleCASPubMed Google Scholar
Guarente, L. & Picard, F. Calorie restriction — the SIR2 connection. Cell120, 473–482 (2005). ArticleCASPubMed Google Scholar
Bordone, L. & Guarente, L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Rev. Mol. Cell Biol.6, 298–305 (2005). ArticleCAS Google Scholar
Sinclair, D. A. Toward a unified theory of caloric restriction and longevity regulation. Mech. Ageing Dev.126, 987–1002 (2005). ArticleCASPubMed Google Scholar
Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell6, 759–767 (2007). ArticleCASPubMed Google Scholar
Guarente, L. Sirtuins in aging and disease. Cold Spring Harb. Symp. Quant. Biol.72, 483–488 (2007). ArticleCASPubMed Google Scholar
Baur, J. A. & Sinclair, D. A. Therapeutic potential of resveratrol: the in vivo evidence. Nature Rev. Drug Discov.5, 493–506 (2006). ArticleCAS Google Scholar
Kim, D. et al. 2007. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J.26, 3169–3179 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, J. et al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J. Biol. Chem.280, 40364–40374 (2005). ArticleCASPubMed Google Scholar
Catoire, H. et al. Sirtuin inhibition protects from the polyalanine muscular dystrophy protein PABPN1. Hum. Mol. Genet.17, 2108–2117 (2008). ArticleCASPubMed Google Scholar
Li, Y., Xu, W., McBurney, M. W. & Longo, V. D. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell. Metab.8, 38–48 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Green, K. et al. Nicotinamide restores cognition in AD transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. (in the press).
Jung, M. Inhibitors of histone deacetylase as new anticancer agents. Curr. Med. Chem.8, 1505–1511 (2001). ArticleCASPubMed Google Scholar
Vigushin, D. M. et al. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res.7, 971–976 (2001). CASPubMed Google Scholar
Wang, C. et al. Histone acetylation and the cell-cycle in cancer. Front. Biosci.6, D610–D629 (2001). ArticleCASPubMed Google Scholar
Secrist, J. P., Zhou, X. & Richon, V. M. HDAC inhibitors for the treatment of cancer. Curr. Opin. Investig. Drugs4, 1422–1427 (2003). CASPubMed Google Scholar
Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl Acad. Sci. USA101, 15064–15069 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mai, A. et al. Synthesis and biological evaluation of 2-, 3-, and 4-acylaminocinnamyl-_N_-hydroxyamides as novel synthetic HDAC inhibitors. Med. Chem.1, 245–254 (2005). ArticleCASPubMed Google Scholar
Yoshida, M. et al. Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother. Pharmacol.48 (Suppl. 1), S20–S26 (2001). ArticleCASPubMed Google Scholar
Lu, Q. et al. Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J. Med. Chem.47, 467–474 (2004). ArticleCASPubMed Google Scholar
Liu, T., Kapustin, G. & Etzkorn, F. A. Design and synthesis of a potent histone deacetylase inhibitor. J. Med. Chem.50, 2003–2006 (2007). ArticleCASPubMed Google Scholar
Curtin, M. & Glaser, K. Histone deacetylase inhibitors: the Abbott experience. Curr. Med. Chem.10, 2373–2392 (2003). ArticleCASPubMed Google Scholar
Khan, N. et al. Determination of the class and isoform selectivity of small molecule HDAC inhibitors. Biochem. J.409, 581–589 (2008). ArticleCASPubMed Google Scholar
Khan, N. et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J.409, 581–589 (2008). ArticleCASPubMed Google Scholar
Glaser, K. B. et al. Differential protein acetylation induced by novel histone deacetylase inhibitors. Biochem. Biophys. Res. Commun.325, 683–690 (2004). ArticleCASPubMed Google Scholar
Mai, A. et al. Exploring the connection unit in the HDAC inhibitor pharmacophore model: novel uracil-based hydroxamates. Bioorg Med. Chem. Lett.15, 4656–4661 (2005). ArticleCASPubMed Google Scholar
Perez-Balado, C. et al. Bispyridinium dienes: histone deacetylase inhibitors with selective activities. J. Med. Chem.50, 2497–2505 (2007). ArticleCASPubMed Google Scholar
Arts, J. et al. R306465 is a novel potent inhibitor of class I histone deacetylases with broad-spectrum antitumoral activity against solid and haematological malignancies. Br. J. Cancer97, 1344–1353 (2007). ArticleCASPubMedPubMed Central Google Scholar
Haggarty, S. J., Koeller, K. M., Wong, J. C., Butcher, R. A. & Schreiber, S. L. Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol.10, 383–396 (2003). ArticleCASPubMed Google Scholar
Mai, A. et al. Discovery of (aryloxopropenyl)pyrrolyl hydroxyamides as selective inhibitors of class IIa histone deacetylase homologue HD1-A. J. Med. Chem.46, 4826–4829 (2003). ArticleCASPubMed Google Scholar
Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA100, 4389–4394 (2003). ArticleCASPubMedPubMed Central Google Scholar
Glaser, K. B. HDAC inhibitors: clinical update and mechanism-based potential. Biochem. Pharmacol.74, 659–671 (2007). ArticleCASPubMed Google Scholar
Beckers, T. et al. Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int. J. Cancer121, 1138–1148 (2007). ArticleCASPubMed Google Scholar
Hess-Stumpp, H., Bracker, T. U., Henderson, D. & Politz, O. MS-275, a potent orally available inhibitor of histone deacetylases — the development of an anticancer agent. Int. J. Biochem. Cell Biol.39, 1388–1405 (2007). ArticleCASPubMed Google Scholar
Hu, E. et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther.307, 720–728 (2003). ArticleCASPubMed Google Scholar
Simonini, M. V. et al. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc. Natl Acad. Sci. USA103, 1587–1592 (2006). This important paper describes the application of HDAC inhibitors for the treatment of CNS disorders, using one of the first benzamide-based brain-permeable HDAC inhibitors developed. ArticleCASPubMedPubMed Central Google Scholar
Zhang, B. et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res.1226, 181–191 (2008). ArticleCASPubMedPubMed Central Google Scholar
Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature425, 191–196 (2003). ArticleCASPubMed Google Scholar
Marcotte, P. A. et al. Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction. Anal. Biochem.332, 90–99 (2004). ArticleCASPubMed Google Scholar
Galletti, P. et al. Diverse effects of natural antioxidants on cyclosporin cytotoxicity in rat renal tubular cells. Nephrol. Dial. Transplant.20, 1551–1558 (2005). ArticleCASPubMed Google Scholar
Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature450, 712–716 (2007). ArticleCASPubMedPubMed Central Google Scholar
Grozinger, C. M., Chao, E. D., Blackwell, H. E., Moazed, D. & Schreiber, S. L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem.276, 38837–38843 (2001). ArticleCASPubMed Google Scholar
Mai, A. et al. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem.48, 7789–7795 (2005). ArticleCASPubMed Google Scholar
Napper, A. D. et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem.48, 8045–8054 (2005). ArticleCASPubMed Google Scholar
Trapp, J. et al. Structure–activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (Sirtuins). ChemMedChem2, 1419–1431 (2007). ArticleCASPubMed Google Scholar
Pardridge, W. M. Brain drug development and brain drug targeting. Pharm. Res.24, 1729–1732 (2007). ArticleCASPubMed Google Scholar