Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes (original) (raw)
Cohen, P. The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur. J. Biochem.268, 5001–5010 (2001). ArticleCASPubMed Google Scholar
Verkhivker, G. M. Exploring sequence-structure relationships in the tyrosine kinome space: functional classification of the binding specificity mechanisms for cancer therapeutics. Bioinformatics23, 1919–1926 (2007). ArticleCASPubMed Google Scholar
Giamas, G. et al. Kinases as targets in the treatment of solid tumors. Cell. Signal.22, 984–1002 (2010). ArticleCASPubMed Google Scholar
Zsila, F., Fitos, I., Bencze, G., Keri, G. & Orfi, L. Determination of human serum α1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors. Curr. Med. Chem.16, 1964–1977 (2009). ArticleCASPubMed Google Scholar
Cheng, H. & Force, T. Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ. Res.106, 21–34 (2010). ArticleCASPubMed Google Scholar
Perez, E. A. et al. Cardiac safety of lapatinib: pooled analysis of 3,689 patients enrolled in clinical trials. Mayo Clin. Proc.83, 679–686 (2008). ArticlePubMed Google Scholar
Ohren, J. F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nature Struct. Mol. Biol.11, 1192–1197 (2004). ArticleCAS Google Scholar
Okram, B. et al. A general strategy for creating “inactive-conformation” Abl inhibitors. Chem. Biol.13, 779–786 (2006). ArticleCASPubMed Google Scholar
Sebolt-Leopold, J. S. et al. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nature Med.5, 810–816 (1999). ArticleCASPubMed Google Scholar
Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer9, 28–39 (2009). ArticleCAS Google Scholar
Morphy, R. Selectively nonselective kinase inhibition: striking the right balance. J. Med. Chem.53, 1413–1437 (2010). ArticleCASPubMed Google Scholar
Bhargava, P. VEGF kinase inhibitors: how do they cause hypertension? Am. J. Physiol. Regul. Integr Comp. Physiol.297, R1–R5 (2009). ArticleCASPubMed Google Scholar
Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Rev. Drug. Discov.8, 627–644 (2009). ArticleCAS Google Scholar
Matsui, T. et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation104, 330–335 (2001). ArticleCASPubMed Google Scholar
Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotech.25, 1035–1044 (2007). A definitive application of open-ended proteomic technology used to gain insight into off-target effects of kinase inhibitors. This approach underscores the inherent challenges in being able to identify mechanisms of toxicity. ArticleCAS Google Scholar
Meissner, K. et al. The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J. Histochem. Cytochem.54, 215–221 (2006). ArticleCASPubMed Google Scholar
Kerkela, R. et al. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin. Transl. Sci.2, 15–25 (2009). ArticleCASPubMedPubMed Central Google Scholar
Thirunavukkarasu, M. et al. VEGFR1 (Flt-1+/−) gene knockout leads to the disruption of VEGF-mediated signaling through the nitric oxide/heme oxygenase pathway in ischemic preconditioned myocardium. Free. Radic. Biol. Med.42, 1487–1495 (2007). ArticleCASPubMedPubMed Central Google Scholar
Thirunavukkarasu, M. et al. Heterozygous disruption of Flk-1 receptor leads to myocardial ischaemia reperfusion injury in mice: application of affymetrix gene chip analysis. J. Cell. Mol. Med.12, 1284–1302 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chintalgattu, V. et al. Cardiomyocyte PDGFR-β signaling is an essential component of the mouse cardiac response to load-induced stress. J. Clin. Invest.120, 472–484 (2010). ArticleCASPubMedPubMed Central Google Scholar
Izumiya, Y. et al. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension47, 887–893 (2006). ArticleCASPubMed Google Scholar
Orphanos, G. S., Ioannidis, G. N. & Ardavanis, A. G. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol.48, 964–970 (2009). ArticleCASPubMed Google Scholar
Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nature Biotech.26, 127–132 (2008). The technology described in this study opened the door for broad scale assessment of competitive inhibition of kinase inhibitors, thereby immediately allowing one to understand the challenges associated with making selective kinase inhibitors. ArticleCAS Google Scholar
Shell, S. A. et al. Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells. Cell Cycle7, 1769–1775 (2008). ArticleCASPubMed Google Scholar
Rixe, O., Billemont, B. & Izzedine, H. Hypertension as a predictive factor of sunitinib activity. Ann. Oncol.18, 1117 (2007). ArticleCASPubMed Google Scholar
Bono, P. et al. Hypertension and clinical benefit of bevacizumab in the treatment of advanced renal cell carcinoma. Ann. Oncol.20, 393–394 (2009). ArticleCASPubMed Google Scholar
Rini, B. I. et al. Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J. Clin. Oncol.26, 3743–3748 (2008). ArticleCASPubMed Google Scholar
Goodwin, R. et al. Treatment-emergent hypertension and outcomes in patients with advanced non-small-cell lung cancer receiving chemotherapy with or without the vascular endothelial growth factor receptor inhibitor cediranib: NCIC Clinical Trials Group Study BR24. Ann. Oncol.21, 2220–2226 (2010). ArticleCASPubMed Google Scholar
Hasinoff, B. B. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol. Appl. Pharmacol.244, 190–195 (2010). ArticleCASPubMed Google Scholar
Fabian, M. A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nature Biotech.23, 329–336 (2005). ArticleCAS Google Scholar
Olaharski, A. J. et al. Identification of a kinase profile that predicts chromosome damage induced by small molecule kinase inhibitors. PLoS Comput. Biol.5, e1000446 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science324, 98–102 (2009). A revolutionary application of airborne radiation; the assessment of radioisotopes in human tissues to estimate proliferation rates. This work definitively shows that the myocardium exhibits a baseline proliferation and has ushered out the notion that the adult heart is forever postmitotic. ArticleCASPubMedPubMed Central Google Scholar
Padin-Iruegas, M. E. et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation120, 876–887 (2009). ArticleCASPubMedPubMed Central Google Scholar
De Angelis, A. et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation121, 276–292 (2010). A thorough demonstration of the use of exogenous stem cells to attenuate cardiotoxicity induced by doxorubicin. These data provide rationale for the hypothesis that the stem cell compartment in the heart is a target of toxicity. This hypothesis was put forth to explain the increased incidence of heart failure in doxorubicin-treated children. ArticleCASPubMed Google Scholar
Kajstura, J. et al. Cardiac stem cells and myocardial disease. J. Mol. Cell. Cardiol.45, 505–513 (2008). ArticleCASPubMed Google Scholar
Huang, C. et al. Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation121, 675–683 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lipshultz, S. E. Exposure to anthracyclines during childhood causes cardiac injury. Semin. Oncol.33, S8–S14 (2006). ArticleCASPubMed Google Scholar
Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Med.8, 459–465 (2002). ArticleCASPubMed Google Scholar
Harris, I. S. et al. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation110, 718–723 (2004). ArticleCASPubMed Google Scholar
Lin, R. C. et al. PI3K(p110α) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler. Thromb. Vasc. Biol.30, 724–732 (2010). ArticleCASPubMed Google Scholar
Sano, M. et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature446, 444–448 (2007). ArticleCASPubMed Google Scholar
Adams, R. H. et al. Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell6, 109–116 (2000). ArticleCASPubMed Google Scholar
Molkentin, J. D. & Robbins, J. With great power comes great responsibility: using mouse genetics to study cardiac hypertrophy and failure. J. Mol. Cell. Cardiol.46, 130–136 (2009). A well-written review about the necessity to understand in deeper detail how transgenic and knockout mice are created, in order to effectively interpret the phenotype that is observed. Specific emphasis is placed on genetically modified mice and their role in understanding cardiac biology. ArticleCASPubMed Google Scholar
Braam, S. R., Passier, R. & Mummery, C. L. Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends Pharmacol. Sci.30, 536–545 (2009). ArticleCASPubMed Google Scholar
Braam, S. R. et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res.4, 107–116 (2010). One of the first articles to use stem cell-derived cardiomyocytes as a model for assessing cardio-active compounds. ArticleCASPubMed Google Scholar
Marroquin, L. D., Hynes, J., Dykens, J. A., Jamieson, J. D. & Will, Y. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci.97, 539–547 (2007). ArticleCASPubMed Google Scholar
Kimes, B. W. & Brandt, B. L. Properties of a clonal muscle cell line from rat heart. Exp. Cell Res.98, 367–381 (1976). ArticleCASPubMed Google Scholar
Merten, K. E., Jiang, Y., Feng, W. & Kang, Y. J. Calcineurin activation is not necessary for doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells: involvement of the phosphoinositide 3-kinase-Akt pathway. J. Pharmacol. Exp. Ther.319, 934–940 (2006). ArticleCASPubMed Google Scholar
Wang, Y. J. et al. Time-dependent block of ultrarapid-delayed rectifier K+ currents by aconitine, a potent cardiotoxin, in heart-derived H9c2 myoblasts and in neonatal rat ventricular myocytes. Toxicol. Sci.106, 454–463 (2008). ArticleCASPubMed Google Scholar
Will, Y. et al. Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol. Sci.106, 153–161 (2008). ArticleCASPubMed Google Scholar
Simpson, P., McGrath, A. & Savion, S. Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ. Res.51, 787–801 (1982). ArticleCASPubMed Google Scholar
Simpson, P. & Savion, S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ. Res.50, 101–116 (1982). ArticleCASPubMed Google Scholar
Kerkela, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Med.12, 908–916 (2006). The first paper describing the cardiotoxicity of kinase inhibitors. The results in this paper changed the approach for assessing cardiotoxicity of kinase inhibitors. ArticleCASPubMed Google Scholar
Hasinoff, B. B., Patel, D. & O'Hara, K. A. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol. Pharmacol.74, 1722–1728 (2008). ArticleCASPubMed Google Scholar
Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res.104, e30–e41 (2009). CASPubMedPubMed Central Google Scholar
Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med.6, 88–95 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotech.22, 1282–1289 (2004). ArticleCAS Google Scholar
Satin, J. et al. Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells26, 1961–1972 (2008). ArticleCASPubMed Google Scholar
Vidarsson, H., Hyllner, J. & Sartipy, P. Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev.6, 108–120 (2010). Article Google Scholar
Liang, H. et al. Human and murine embryonic stem cell-derived cardiomyocytes serve together as a valuable model for drug safety screening. Cell Physiol. Biochem.25, 459–466 (2010). ArticleCASPubMed Google Scholar
Hill, A. J., Teraoka, H., Heideman, W. & Peterson, R. E. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci.86, 6–19 (2005). ArticleCASPubMed Google Scholar
Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature464, 606–609 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baker, K., Warren, K. S., Yellen, G. & Fishman, M. C. Defective “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proc. Natl Acad. Sci. USA94, 4554–4559 (1997). ArticleCASPubMedPubMed Central Google Scholar
Eimon, P. M. & Rubinstein, A. L. The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin. Drug. Metab. Toxicol.5, 393–401 (2009). ArticleCASPubMed Google Scholar
Pugach, E. K., Li, P., White, R. & Zon, L. Retro-orbital injection in adult zebrafish. J. Vis. Exp.34, 1645 (2009). Google Scholar
Herman, E. H. & Ferrans, V. J. Pretreatment with ICRF-187 provides long-lasting protection against chronic daunorubicin cardiotoxicity in rabbits. Cancer Chemother. Pharmacol.16, 102–106 (1986). ArticleCASPubMed Google Scholar
Herman, E. H., Ferrans, V. J., Jordan, W. & Ardalan, B. Reduction of chronic daunorubicin cardiotoxicity by ICRF-187 in rabbits. Res. Commun. Chem. Pathol. Pharmacol.31, 85–97 (1981). CASPubMed Google Scholar
Herman, E. H. & Ferrans, V. J. Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin. Oncol.25, 15–21 (1998). CASPubMed Google Scholar
Fernandez, A. et al. An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J. Clin. Invest.117, 4044–4054 (2007). ArticleCASPubMedPubMed Central Google Scholar
Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol.32, 56–67 (2000). ArticleCASPubMed Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCASPubMed Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCASPubMed Google Scholar
Eschenhagen, T. et al. Cardiovascular side-effects of cancer therapies: a position statement from the heart failure association of the european society of cardiology. Eur. J. Heart Fail13, 1–10 (2011). ArticlePubMed Google Scholar
Zhang, L. & Dokainish, H. Echocardiography in the assessment of heart failure. Minerva Cardioangiol.57, 457–466 (2009). CASPubMed Google Scholar
Apple, F. S. A new season for cardiac troponin assays: it's time to keep a scorecard. Clin. Chem.55, 1303–1306 (2009). ArticleCASPubMed Google Scholar
Apple, F. High-sensitivity cardiac troponin assays: what analytical and clinical issues need to be addressed before introduction into clinical practice? Clin. Chem.56, 886–891 (2010). ArticleCAS Google Scholar
Polena, S. et al. Troponin I as a marker of doxorubicin induced cardiotoxicity. Proc. West. Pharmacol. Soc.48, 142–144 (2005). CASPubMed Google Scholar
Cardinale, D. et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation114, 2474–2481 (2006). ArticleCASPubMed Google Scholar
Cardinale, D. et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J. Clin. Oncol.28, 3910–3916 (2010). ArticleCASPubMed Google Scholar
Henderson, I. C. et al. Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J. Clin. Oncol.7, 560–571 (1989). ArticleCASPubMed Google Scholar
Mordente, A., Meucci, E., Silvestrini, A., Martorana, G. E. & Giardina, B. New developments in anthracycline-induced cardiotoxicity. Curr. Med. Chem.16, 1656–1672 (2009). ArticleCASPubMed Google Scholar
Lewis, G. D., Asnani, A. & Gerszten, R. E. Application of metabolomics to cardiovascular biomarker and pathway discovery. Am. Coll. Cardiol.52, 117–123 (2008). ArticleCAS Google Scholar
Lewis, G. D. et al. Metabolic signatures of exercise in human plasma. Sci. Transl. Med.2, 33–37 (2010). ArticleCAS Google Scholar
Brini, M. & Carafoli, E. Calcium pumps in health and disease. Physiol. Rev.89, 1341–1378 (2009). ArticleCASPubMed Google Scholar
Swain, J. L., Sabina, R. L., McHale, P. A., Greenfield, J. C. Jr & Holmes, E. W. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am. J. Physiol.242, H818–H826 (1982). CASPubMed Google Scholar
Khouri, E. M., Gregg, D. E. & Rayford, C. R. Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ. Res.17, 427–437 (1965). ArticleCASPubMed Google Scholar
Barry, S. P., Davidson, S. M. & Townsend, P. A. Molecular regulation of cardiac hypertrophy. Int. J. Biochem. Cell. Biol.40, 2023–2039 (2008). ArticleCASPubMed Google Scholar
Oliveira, R. S. et al. Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. J. Physiol.587, 3899–3910 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, T. et al. CaMKIIδ isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J. Biol. Chem.282, 35078–35087 (2007). ArticleCASPubMed Google Scholar
Zhang, T. et al. Phospholamban ablation rescues sarcoplasmic reticulum Ca2+ handling but exacerbates cardiac dysfunction in CaMKIIδC transgenic mice. Circ. Res.106, 354–362 (2010). ArticleCASPubMed Google Scholar
Vittone, L., Mundina-Weilenmann, C. & Mattiazzi, A. Phospholamban phosphorylation by CaMKII under pathophysiological conditions. Front. Biosci.13, 5988–6005 (2008). ArticleCASPubMed Google Scholar
Ghoreschi, K., Laurence, A. & O'Shea, J. J. Selectivity and therapeutic inhibition of kinases: to be or not to be? Nature Immunol.10, 356–360 (2009). ArticleCAS Google Scholar
Louvet, C. et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA105, 18895–18900 (2008). ArticlePubMedPubMed Central Google Scholar
Mariani, S. et al. Imatinib does not substantially modify the glycemic profile in patients with chronic myeloid leukaemia. Leuk. Res.34, e5–e7 (2010). ArticleCASPubMed Google Scholar
Agostino, N. et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 4 Aug 2010 (doi:10.1177/1078155210378913).
Klein, M. et al. Combined tyrosine and serine/threonine kinase inhibition by sorafenib prevents progression of experimental pulmonary hypertension and myocardial remodeling. Circulation118, 2081–2090 (2008). ArticleCASPubMed Google Scholar
Ghofrani, H. A. et al. Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am. J. Respir. Crit. Care Med.182, 1171–1177 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, C. H. et al. Stem cell factor deficiency is vasculoprotective: unraveling a new therapeutic potential of imatinib mesylate. Circ. Res.99, 617–625 (2006). ArticleCASPubMed Google Scholar
Makiyama, Y. et al. Imatinib mesilate inhibits neointimal hyperplasia via growth inhibition of vascular smooth muscle cells in a rat model of balloon injury. Tohoku J. Exp. Med.215, 299–306 (2008). ArticleCASPubMed Google Scholar
Ayach, B. B. et al. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc. Natl Acad. Sci. USA103, 2304–2309 (2006). ArticleCASPubMedPubMed Central Google Scholar
Force, T. et al. Research priorities in hypertrophic cardiomyopathy: report of a working group of the National Heart, Lung, and Blood Institute. Circulation122, 1130–1133 (2010). ArticlePubMedPubMed Central Google Scholar
Ahmad, F. et al. Increased α2 subunit-associated AMPK activity and PRKAG2 cardiomyopathy. Circulation112, 3140–3148 (2005). ArticleCASPubMed Google Scholar
Tao, R., Zhang, J., Vessey, D. A., Honbo, N. & Karliner, J. S. Deletion of the sphingosine kinase-1 gene influences cell fate during hypoxia and glucose deprivation in adult mouse cardiomyocytes. Cardiovasc. Res.74, 56–63 (2007). ArticleCASPubMed Google Scholar
Moga, M. A., Nakamura, T. & Robbins, J. Genetic approaches for changing the heart and dissecting complex syndromes. J. Mol. Cell. Cardiol.45, 148–155 (2008). ArticleCASPubMedPubMed Central Google Scholar
Aoki, Y., Niihori, T., Narumi, Y., Kure, S. & Matsubara, Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum. Mutat.29, 992–1006 (2008). ArticleCASPubMed Google Scholar
Gelb, B. D. & Tartaglia, M. Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum. Mol. Genet.15,R220–R226 (2006). ArticleCAS Google Scholar
Yamaguchi, O. et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J. Clin. Invest.114, 937–943 (2004). ArticleCASPubMedPubMed Central Google Scholar
McMullen, J. R. & Jay, P. Y. PI3K(p110α) inhibitors as anti-cancer agents: minding the heart. Cell Cycle6, 910–913 (2007). ArticleCASPubMed Google Scholar
McMullen, J. R. et al. Protective effects of exercise and phosphoinositide 3-kinase(p110α) signaling in dilated and hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA104, 612–617 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rose, R. A., Kabir, M. G. & Backx, P. H. Altered heart rate and sinoatrial node function in mice lacking the cAMP regulator phosphoinositide 3-kinase-γ. Circ. Res.101, 1274–1282 (2007). ArticleCASPubMed Google Scholar
Oudit, G. Y. et al. Phosphoinositide 3-kinase-γ-deficient mice are protected from isoproterenol-induced heart failure. Circulation108, 2147–2152 (2003). ArticleCASPubMed Google Scholar
Oudit, G. Y. et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell. Cardiol.37, 449–471 (2004). ArticleCASPubMed Google Scholar
Mora, A. et al. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J.22, 4666–4676 (2003). ArticleCASPubMedPubMed Central Google Scholar
DeBosch, B. et al. Akt1 is required for physiological cardiac growth. Circulation113, 2097–2104 (2006). ArticleCASPubMed Google Scholar
DeBosch, B., Sambandam, N., Weinheimer, C., Courtois, M. & Muslin, A. J. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J. Biol. Chem.281, 32841–32851 (2006). ArticleCASPubMed Google Scholar
Lee, C. H., Inoki, K. & Guan, K. L. mTOR pathway as a target in tissue hypertrophy. Annu. Rev. Pharmacol. Toxicol.47, 443–467 (2007). ArticleCASPubMed Google Scholar
Ciuffreda, L., Di Sanza, C., Incani, U. C. & Milella, M. The mTOR pathway: a new target in cancer therapy. Curr. Cancer Drug Targets10, 10484–10495 (2010). Article Google Scholar
Blair, E. et al. Mutations in the γ2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet.10, 1215–1220 (2001). ArticleCASPubMed Google Scholar
Zhang, P. et al. AMP activated protein kinase-α2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension52, 918–924 (2008). ArticleCASPubMed Google Scholar
Matsuda, T. et al. Distinct roles of GSK-3α and GSK-3β phosphorylation in the heart under pressure overload. Proc. Natl Acad. Sci. USA105, 20900–20905 (2008). ArticlePubMedPubMed Central Google Scholar
Kerkela, R. et al. Deletion of GSK-3β in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J. Clin. Invest.118, 3609–3618 (2008). ArticleCASPubMedPubMed Central Google Scholar
Woulfe, K. C. et al. Glycogen synthase kinase-3β regulates post-myocardial infarction remodeling and stress-induced cardiomyocyte proliferation in vivo. Circ. Res.106, 1635–1645 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liem, D. A. et al. Cyclin-dependent kinase 2 signaling regulates myocardial ischemia/reperfusion injury. J. Mol. Cell. Cardiol.45, 610–616 (2008). ArticleCASPubMedPubMed Central Google Scholar
Perez Fidalgo, J. A., Roda, D., Rosello, S., Rodriguez-Braun, E. & Cervantes, A. Aurora kinase inhibitors: a new class of drugs targeting the regulatory mitotic system. Clin. Transl. Oncol.11, 787–798 (2009). ArticleCASPubMed Google Scholar
Lapenna, S. & Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nature Rev. Drug. Discov.8, 547–566 (2009). ArticleCAS Google Scholar
Chopra, P., Sethi, G., Dastidar, S. G. & Ray, A. Polo-like kinase inhibitors: an emerging opportunity for cancer therapeutics. Expert Opin. Investig. Drugs19, 27–43 (2010). ArticleCASPubMed Google Scholar
Noma, T. et al. β-arrestin-mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J. Clin. Invest.117, 2445–2458 (2007). ArticleCASPubMedPubMed Central Google Scholar
De Keulenaer, G. W., Doggen, K. & Lemmens, K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ. Res.106, 35–46 (2010). ArticleCASPubMed Google Scholar
Iwamoto, R. et al. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl Acad. Sci. USA100, 3221–3226 (2003). ArticleCASPubMedPubMed Central Google Scholar
Liu, F. F. et al. Heterozygous knockout of neuregulin-1 gene in mice exacerbates doxorubicin-induced heart failure. Am. J. Physiol.289, H660–H666 (2005). CAS Google Scholar
Garcia-Rivello, H. et al. Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle. Am. J. Physiol.289, H1153–H1160 (2005). CAS Google Scholar
Fazel, S. et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest.116, 1865–1877 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hilfiker-Kleiner, D., Limbourg, A. & Drexler, H. STAT3-mediated activation of myocardial capillary growth. Trends Cardiovas. Med.15, 152–157 (2005). ArticleCAS Google Scholar
Kunisada, K. et al. Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc. Natl Acad. Sci. USA97, 315–319 (2000). ArticleCASPubMedPubMed Central Google Scholar
Barry, S. P., Townsend, P. A., Latchman, D. S. & Stephanou, A. Role of the JAK-STAT pathway in myocardial injury. Trends Mol. Med.13, 82–89 (2007). ArticleCASPubMed Google Scholar
Peng, X. et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J. Clin. Invest.116, 217–227 (2006). ArticleCASPubMed Google Scholar
O'Cochlain, D. F. et al. Transgenic overexpression of human DMPK accumulates into hypertrophic cardiomyopathy, myotonic myopathy and hypotension traits of myotonic dystrophy. Hum. Mol. Genet.13, 2505–2518 (2004). ArticleCASPubMed Google Scholar
Honda, H. et al. Heart-specific activation of LTK results in cardiac hypertrophy, cardiomyocyte degeneration and gene reprogramming in transgenic mice. Oncogene18, 3821–3830 (1999). ArticleCASPubMed Google Scholar
Shi, J., Zhang, Y. W., Yang, Y., Zhang, L. & Wei, L. ROCK1 plays an essential role in the transition from cardiac hypertrophy to failure in mice. J. Mol. Cell Cardiol.49, 819–828 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Y. M. et al. Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J.20, 916–925 (2006). ArticleCASPubMed Google Scholar
Zheng, M. et al. Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum. Mol. Genet.18, 701–713 (2009). ArticleCASPubMed Google Scholar
Lorenz, K., Schmitt, J. P., Schmitteckert, E. M. & Lohse, M. J. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nature Med.15, 75–83 (2009). ArticleCASPubMed Google Scholar
Lips, D. J. et al. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation109, 1938–1941 (2004). ArticleCASPubMed Google Scholar
Kehat, I. & Molkentin, J. D. Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann. NY Acad. Sci.1188, 96–102 (2010). ArticleCASPubMed Google Scholar
Nakamura, T. et al. Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. J. Clin. Invest.117, 2123–2132 (2007). ArticleCASPubMedPubMed Central Google Scholar
Liu, Q. et al. PKCα, but not PKCβ or PKCγ, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ. Res.105, 194–200 (2009). ArticleCASPubMedPubMed Central Google Scholar
Takimoto, E. et al. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J. Clin. Invest.119, 408–420 (2009). CASPubMedPubMed Central Google Scholar
Guazzi, M., Vicenzi, M., Arena, R. & Guazzi, M. D. PDE5-inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry and clinical status in patients with stable systolic heart failure: results of a 1-year prospective, randomized, rlacebo-controlled study. Circ. Heart Fail. 29 Oct 2010 (doi:10.1161/circheartfailure.110.944694).
Muraski, J. A. et al. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nature Med.13, 1467–1475 (2007). ArticleCASPubMed Google Scholar
Sag, C. M. et al. Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ. Heart Fail.2, 664–675 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ling, H. et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J. Clin. Invest.119, 1230–1240 (2009). ArticlePubMedPubMed Central Google Scholar
Lymperopoulos, A. et al. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J. Biol. Chem.285, 16378–16386 (2010). ArticleCASPubMedPubMed Central Google Scholar
Eckhart, A. D. et al. Hybrid transgenic mice reveal in vivo specificity of G protein-coupled receptor kinases in the heart. Circ. Res.86, 43–50 (2000). ArticleCASPubMed Google Scholar
Yamaguchi, O. et al. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling. Proc. Natl Acad. Sci. USA100, 15883–15888 (2003). ArticleCASPubMedPubMed Central Google Scholar
Taniike, M. et al. Apoptosis signal-regulating kinase 1/p38 signaling pathway negatively regulates physiological hypertrophy. Circulation117, 545–552 (2008). ArticleCASPubMed Google Scholar
Hescheler, J. et al. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ. Res.69, 1476–1486 (1991). ArticleCASPubMed Google Scholar
Zordoky, B. N. & El-Kadi, A. O. H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. J. Pharmacol. Toxicol. Methods56, 317–322 (2007). ArticleCASPubMed Google Scholar
Field, L. J. Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science239, 1029–1033 (1988). ArticleCASPubMed Google Scholar
White, S. M., Constantin, P. E. & Claycomb, W. C. Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am. J. Physiol.286, H823–H829 (2004). CAS Google Scholar
Eimre, M. et al. Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. Biochim. Biophys. Acta1777, 514–524 (2008). ArticleCASPubMed Google Scholar
Fritzsche, M., Fredriksson, J. M., Carlsson, M. & Mandenius, C. F. A cell-based sensor system for toxicity testing using multiwavelength fluorescence spectroscopy. Anal. Biochem.387, 271–275 (2009). ArticleCASPubMed Google Scholar
Zhang, Y., Nuglozeh, E., Toure, F., Schmidt, A. M. & Vunjak-Novakovic, G. Controllable expansion of primary cardiomyocytes by reversible immortalization. Hum. Gene Ther.20, 1687–1696 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pentassuglia, L. et al. Inhibition of ErbB2/neuregulin signaling augments paclitaxel-induced cardiotoxicity in adult ventricular myocytes. Exp. Cell Res.313, 1588–1601 (2007). ArticleCASPubMed Google Scholar
Deng, X. F., Rokosh, D. G. & Simpson, P. C. Autonomous and growth factor-induced hypertrophy in cultured neonatal mouse cardiac myocytes. Comparison with rat. Circ. Res.87, 781–788 (2000). ArticleCASPubMed Google Scholar
Gussak, I., Chaitman, B. R., Kopecky, S. L. & Nerbonne, J. M. Rapid ventricular repolarization in rodents: electrocardiographic manifestations, molecular mechanisms, and clinical insights. J. Electrocardiol.33, 159–170 (2000). ArticleCASPubMed Google Scholar
Brouillette, J., Clark, R. B., Giles, W. R. & Fiset, C. Functional properties of K+ currents in adult mouse ventricular myocytes. J. Physiol.559, 777–798 (2004). ArticleCASPubMedPubMed Central Google Scholar
Volz, A., Piper, H. M., Siegmund, B. & Schwartz, P. Longevity of adult ventricular rat heart muscle cells in serum-free primary culture. J. Mol. Cell. Cardiol.23, 161–173 (1991). ArticleCASPubMed Google Scholar
Ellingsen, O. et al. Adult rat ventricular myocytes cultured in defined medium: phenotype and electromechanical function. Am. J. Physiol.265, H747–H754 (1993). CASPubMed Google Scholar
Bistola, V. et al. Long-term primary cultures of human adult atrial cardiac myocytes: cell viability, structural properties and BNP secretion in vitro. Int. J. Cardiol.131, 113–122 (2008). ArticlePubMed Google Scholar
Benardeau, A. et al. Primary culture of human atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardium. J. Mol. Cell. Cardiol.29, 1307–1320 (1997). ArticleCASPubMed Google Scholar
Li, R. K. et al. Human pediatric and adult ventricular cardiomyocytes in culture: assessment of phenotypic changes with passaging. Cardiovasc. Res.32, 362–373 (1996). ArticleCASPubMed Google Scholar
Davidson, M. M. et al. Novel cell lines derived from adult human ventricular cardiomyocytes. J. Mol. Cell. Cardiol.39, 133–147 (2005). ArticleCASPubMed Google Scholar
Zhou, J. et al. GSK-3α directly regulates β adrenergic signaling and the response of the heart to hemodynamic stress in mice. J. Clin. Invest.120, 2280–2291 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kondo, R. P. et al. Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. J. Physiol.571, 131–46 (2006). ArticleCASPubMed Google Scholar