The secret ally: immunostimulation by anticancer drugs (original) (raw)
Czernilofsky, A. P. et al. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature287, 198–203 (1980). ArticleCASPubMed Google Scholar
Roussel, M. et al. Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature281, 452–455 (1979). ArticleCASPubMed Google Scholar
Chabner, B. A. & Roberts, T. G. Jr. Chemotherapy and the war on cancer. Nature Rev. Cancer5, 65–72 (2005). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Nowell, P. & Hungerford, D. A minute chromosome in chronic granulocytic leukemia. Science132, 1497 (1960). Google Scholar
Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature243, 290–293 (1973). ArticleCASPubMed Google Scholar
Stam, K. et al. Evidence of a new chimeric _bcr/_c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N. Engl. J. Med.313, 1429–1433 (1985). ArticleCASPubMed Google Scholar
Ben-Neriah, Y., Daley, G. Q., Mes-Masson, A. M., Witte, O. N. & Baltimore, D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science233, 212–214 (1986). The studies in Ref. 7 and Ref. 8 reported the molecular characterization of the transcript and protein products of theBCR–ABLgene, laying the foundations of targeted anticancer therapy. ArticleCASPubMed Google Scholar
Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug Discov.1, 493–502 (2002). ArticleCAS Google Scholar
Apperley, J. F. et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor β. N. Engl. J. Med.347, 481–487 (2002). ArticleCASPubMed Google Scholar
Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med.347, 472–480 (2002). CASPubMed Google Scholar
Dowell, J., Minna, J. D. & Kirkpatrick, P. Erlotinib hydrochloride. Nature Rev. Drug Discov.4, 13–14 (2005). ArticleCAS Google Scholar
Moy, B., Kirkpatrick, P., Kar, S. & Goss, P. Lapatinib. Nature Rev. Drug Discov.6, 431–432 (2007). ArticleCAS Google Scholar
Blankenstein, T. The role of tumor stroma in the interaction between tumor and immune system. Curr. Opin. Immunol.17, 180–186 (2005). ArticleCASPubMed Google Scholar
Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov.3, 391–400 (2004). ArticleCAS Google Scholar
Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nature Rev. Immunol.8, 59–73 (2008). ArticleCAS Google Scholar
Schilsky, R. L. Personalized medicine in oncology: the future is now. Nature Rev. Drug Discov.9, 363–366 (2010). ArticleCAS Google Scholar
Zitvogel, L., Kepp, O. & Kroemer, G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nature Rev. Clin. Oncol.8, 151–160 (2011). ArticleCAS Google Scholar
Lenz, G. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med.359, 2313–2323 (2008). ArticleCASPubMed Google Scholar
Nardin, A. et al. Dacarbazine promotes stromal remodeling and lymphocyte infiltration in cutaneous melanoma lesions. J. Invest. Dermatol.131, 1896–1905 (2011). ArticleCASPubMed Google Scholar
Staaf, J. et al. Identification of subtypes in human epidermal growth factor receptor 2-positive breast cancer reveals a gene signature prognostic of outcome. J. Clin. Oncol.28, 1813–1820 (2010). ArticlePubMed Google Scholar
Thurlow, J. K. et al. Spectral clustering of microarray data elucidates the roles of microenvironment remodeling and immune responses in survival of head and neck squamous cell carcinoma. J. Clin. Oncol.28, 2881–2888 (2010). ArticleCASPubMed Google Scholar
Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res.14, 5158–5165 (2008). ArticleCASPubMed Google Scholar
Desmedt, C. et al. Multifactorial approach to predicting resistance to anthracyclines. J. Clin. Oncol.29, 1578–1586 (2011). ArticleCASPubMed Google Scholar
Paulson, K. G. et al. Transcriptome-wide studies of Merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J. Clin. Oncol.29, 1539–1546 (2011). ArticleCASPubMedPubMed Central Google Scholar
Eerola, A. K., Soini, Y. & Paakko, P. A high number of tumor-infiltrating lymphocytes are associated with a small tumor size, low tumor stage, and a favorable prognosis in operated small cell lung carcinoma. Clin. Cancer Res.6, 1875–1881 (2000). CASPubMed Google Scholar
Kamper, P. et al. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein–Barr virus status in classical Hodgkin's lymphoma. Haematologica96, 269–276 (2011). ArticlePubMed Google Scholar
Komohara, Y. et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci.102, 1424–1431 (2011). ArticleCASPubMed Google Scholar
Lee, C. H. et al. Prognostic significance of macrophage infiltration in leiomyosarcomas. Clin. Cancer Res.14, 1423–1430 (2008). ArticleCASPubMed Google Scholar
Ding, T. et al. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum. Pathol.40, 381–389 (2009). ArticleCASPubMed Google Scholar
Zhang, B. C. et al. Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma. Med. Oncol.28, 1447–1452 (2010). ArticlePubMed Google Scholar
Nonomura, N. et al. Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int.107, 1918–1922 (2011). ArticlePubMed Google Scholar
Kinouchi, M. et al. Infiltration of CD14-positive macrophages at the invasive front indicates a favorable prognosis in colorectal cancer patients with lymph node metastasis. Hepatogastroenterology58, 352–358 (2011). PubMed Google Scholar
Ladoire, S. et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating Foxp3+ regulatory T cells. Clin. Cancer Res.14, 2413–2420 (2008). ArticleCASPubMed Google Scholar
Ladoire, S. et al. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J. Pathol.224, 389–400 (2011). ArticleCASPubMed Google Scholar
De Monte, L. et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J. Exp. Med.208, 469–478 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pedroza-Gonzalez, A. et al. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J. Exp. Med.208, 479–490 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fu, J. et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology132, 2328–2339 (2007). ArticlePubMed Google Scholar
Shen, Z. et al. Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J. Cancer Res. Clin. Oncol.136, 1585–1595 (2010). ArticleCASPubMed Google Scholar
Petersen, R. P. et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer107, 2866–2872 (2006). ArticlePubMed Google Scholar
Correale, P. et al. Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J. Immunother.33, 435–441 (2010). ArticlePubMedPubMed Central Google Scholar
Ladoire, S., Martin, F. & Ghiringhelli, F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol. Immunother.60, 909–918 (2011). ArticleCASPubMed Google Scholar
Halama, N. et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res.71, 5670–5677 (2011). ArticleCASPubMed Google Scholar
Bonertz, A. et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J. Clin. Invest.119, 3311–3321 (2009). CASPubMedPubMed Central Google Scholar
Sconocchia, G. et al. Tumor infiltration by FcγRIII (CD16)+ myeloid cells is associated with improved survival in patients with colorectal carcinoma. Int. J. Cancer128, 2663–2672 (2011). ArticleCASPubMed Google Scholar
Alvaro-Naranjo, T. et al. Tumor-infiltrating cells as a prognostic factor in Hodgkin's lymphoma: a quantitative tissue microarray study in a large retrospective cohort of 267 patients. Leuk. Lymphoma46, 1581–1591 (2005). ArticlePubMed Google Scholar
Polcher, M. et al. Foxp3+ cell infiltration and granzyme B+/Foxp3+ cell ratio are associated with outcome in neoadjuvant chemotherapy-treated ovarian carcinoma. Cancer Immunol. Immunother.59, 909–919 (2010). ArticleCASPubMed Google Scholar
Distel, L. V. et al. Tumour infiltrating lymphocytes in squamous cell carcinoma of the oro- and hypopharynx: prognostic impact may depend on type of treatment and stage of disease. Oral Oncol.45, e167–e174 (2009). ArticleCASPubMed Google Scholar
Wu, X. J. et al. Circulating antibodies to carcinoembryonic antigen related to improved recurrence-free survival of patients with colorectal carcinoma. J. Int. Med. Res.39, 838–845 (2011). ArticlePubMed Google Scholar
Ait-Tahar, K. et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood115, 3314–3319 (2010). ArticleCASPubMed Google Scholar
Albertus, D. L. et al. AZGP1 autoantibody predicts survival and histone deacetylase inhibitors increase expression in lung adenocarcinoma. J. Thorac. Oncol.3, 1236–1244 (2008). ArticlePubMed Google Scholar
Hamanaka, Y. et al. Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int. J. Cancer103, 97–100 (2003). ArticleCASPubMed Google Scholar
Touze, A. et al. High levels of antibodies against Merkel cell polyomavirus identify a subset of patients with Merkel cell carcinoma with better clinical outcome. J. Clin. Oncol.29, 1612–1619 (2011). ArticleCASPubMed Google Scholar
Delahaye, N. F. et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nature Med.17, 700–707 (2011). The outcome of imatinib treatment in patients with GISTs was found to be influenced by the expression pattern of alternatively spliced NKp30 isoforms, thus unveiling an immune mechanism underlying at least part of the therapeutic efficacy of imatinib. ArticleCASPubMed Google Scholar
Cerhan, J. R. et al. Prognostic significance of host immune gene polymorphisms in follicular lymphoma survival. Blood109, 5439–5446 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kleinrath, T., Gassner, C., Lackner, P., Thurnher, M. & Ramoner, R. Interleukin-4 promoter polymorphisms: a genetic prognostic factor for survival in metastatic renal cell carcinoma. J. Clin. Oncol.25, 845–851 (2007). ArticleCASPubMed Google Scholar
Sellick, G. S. et al. Scan of 977 nonsynonymous SNPs in CLL4 trial patients for the identification of genetic variants influencing prognosis. Blood111, 1625–1633 (2008). ArticleCASPubMed Google Scholar
Domingo-Domenech, E. et al. Impact of interleukin-10 polymorphisms (−1082 and −3575) on the survival of patients with lymphoid neoplasms. Haematologica92, 1475–1481 (2007). ArticleCASPubMed Google Scholar
DeMichele, A. et al. Host genetic variants in the interleukin-6 promoter predict poor outcome in patients with estrogen receptor-positive, node-positive breast cancer. Cancer Res.69, 4184–4191 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schoof, N. et al. Favorable impact of the interleukin-4 receptor allelic variant I75 on the survival of diffuse large B-cell lymphoma patients demonstrated in a large prospective clinical trial. Ann. Oncol.20, 1548–1554 (2009). ArticleCASPubMed Google Scholar
Bibeau, F. et al. Impact of FcγRIIa–FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol.27, 1122–1129 (2009). ArticleCASPubMed Google Scholar
Ferris, R. L., Jaffee, E. M. & Ferrone, S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J. Clin. Oncol.28, 4390–4399 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, B., Kokhaei, P., Mellstedt, H. & Liljefors, M. FcγR polymorphisms and clinical outcome in colorectal cancer patients receiving passive or active antibody treatment. Int. J. Oncol.37, 1599–1606 (2010). PubMed Google Scholar
Wilson, N. S. et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell19, 101–113 (2011). Fcγ receptors on tumour-associated leukocytes were shown to provide a dynamic platform that facilitates the monoclonal antibody-dependent activation of death receptor 5 on tumour cells, and hence their death. ArticleCASPubMed Google Scholar
Menard, C. et al. Natural killer cell IFN-γ levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res.69, 3563–3569 (2009). ArticleCASPubMed Google Scholar
Gulley, J. L. et al. Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol. Immunother.59, 663–674 (2010). ArticleCASPubMed Google Scholar
Liu, W. M., Fowler, D. W., Smith, P. & Dalgleish, A. G. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br. J. Cancer102, 115–123 (2010). ArticleCASPubMed Google Scholar
Nowak, A. K. et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J. Immunol.170, 4905–4913 (2003). ArticleCASPubMed Google Scholar
Nowak, A. K., Robinson, B. W. & Lake, R. A. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res.63, 4490–4496 (2003). CASPubMed Google Scholar
Mundy-Bosse, B. L. et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res.71, 5101–5110 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vincent, J. et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res.70, 3052–3061 (2010). ArticleCASPubMed Google Scholar
Lesterhuis, W. J. et al. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J. Clin. Invest.121, 3100–3108 (2011). ArticleCASPubMedPubMed Central Google Scholar
Weiner, H. L. & Cohen, J. A. Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. Mult. Scler.8, 142–154 (2002). ArticleCASPubMed Google Scholar
Medina-Echeverz, J. et al. Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J. Immunol.186, 807–815 (2011). ArticleCASPubMed Google Scholar
Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother.56, 641–648 (2007). ArticleCASPubMed Google Scholar
Taieb, J. et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J. Immunol.176, 2722–2729 (2006). ArticleCASPubMed Google Scholar
Viaud, S. et al. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res.71, 661–665 (2011). ArticleCASPubMed Google Scholar
Schiavoni, G. et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res.71, 768–778 (2011). ArticleCASPubMed Google Scholar
Guerriero, J. L. et al. DNA alkylating therapy induces tumor regression through an HMGB1-mediated activation of innate immunity. J. Immunol.186, 3517–3526 (2011). ArticleCASPubMed Google Scholar
Hirschhorn-Cymerman, D. et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J. Exp. Med.206, 1103–1116 (2009). ArticleCASPubMedPubMed Central Google Scholar
Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother.58, 49–59 (2009). ArticleCASPubMed Google Scholar
Ge, Y. et al. Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol. Immunother. 14 Sep 2011 (doi:10.1007/s00262-011-1106-3).
Mattarollo, S. R. et al. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res.71, 4809–4820 (2011). The studies in Ref. 84 and Ref. 85 unravel the cellular dynamics and molecular determinants underlying the immune infiltration of experimental breast adenocarcinomas and fibrosarcomas in response to anthracycline-based chemotherapy, highlighting a crucial early role for IL-17-producing γδ T cells. ArticleCASPubMed Google Scholar
Haggerty, T. J. et al. Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells. Cancer Immunol. Immunother.60, 133–144 (2011). ArticleCASPubMed Google Scholar
Tesniere, A. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene29, 482–491 (2010). ArticleCASPubMed Google Scholar
Martins, I. et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene30, 1147–1158 (2011). The release of ATP by dying cancer cells, which is required for immunogenic cell death, relies on the cellular machinery for autophagy, as demonstrated in human and murine genetic models of autophagy deficiencyin vitroandin vivo. ArticleCASPubMed Google Scholar
Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med.13, 54–61 (2007). This was the first demonstration that apoptotic cell death can occur in an immunogenic fashion, provided that the endoplasmic reticulum chaperone protein calreticulin is exposed on the surface of dying cells. ArticleCASPubMed Google Scholar
Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nature Rev. Mol. Cell Biol.12, 385–392 (2011). ArticleCAS Google Scholar
Zhu, Y., Liu, N., Xiong, S. D., Zheng, Y. J. & Chu, Y. W. CD4+Foxp3+ regulatory T-cell impairment by paclitaxel is independent of toll-like receptor 4. Scand. J. Immunol.73, 301–308 (2011). ArticleCASPubMed Google Scholar
Ramakrishnan, R. et al. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest.120, 1111–1124 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kodumudi, K. N. et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res.16, 4583–4594 (2010). ArticleCASPubMed Google Scholar
Niiya, M. et al. Induction of TNF-α, uPA, IL-8 and MCP-1 by doxorubicin in human lung carcinoma cells. Cancer Chemother. Pharmacol.52, 391–398 (2003). ArticlePubMed Google Scholar
Geller, M. A., Bui-Nguyen, T. M., Rogers, L. M. & Ramakrishnan, S. Chemotherapy induces macrophage chemoattractant protein-1 production in ovarian cancer. Int. J. Gynecol. Cancer20, 918–925 (2010). ArticlePubMed Google Scholar
Qian, D. Z. et al. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate70, 433–442 (2010). CASPubMedPubMed Central Google Scholar
Fujimoto, H. et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int. J. Cancer125, 1276–1284 (2009). ArticleCASPubMed Google Scholar
Kovarova, L. et al. Dendritic cell counts and their subsets during treatment of multiple myeloma. Neoplasma54, 297–303 (2007). CASPubMed Google Scholar
Shurin, G. V., Tourkova, I. L., Kaneno, R. & Shurin, M. R. Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J. Immunol.183, 137–144 (2009). ArticleCASPubMed Google Scholar
Thomas-Schoemann, A. et al. Bystander effect of vinorelbine alters antitumor immune response. Int. J. Cancer129, 1511–1518 (2011). ArticleCASPubMed Google Scholar
Purcell, W. T. & Ettinger, D. S. Novel antifolate drugs. Curr. Oncol. Rep.5, 114–125 (2003). ArticlePubMed Google Scholar
Gibbs, D. & Jackman, A. Pemetrexed disodium. Nature Rev. Drug Discov.5, S16–S17 (2005). Article Google Scholar
Cronstein, B. N. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol. Rev.57, 163–172 (2005). ArticleCASPubMed Google Scholar
Kaneno, R., Shurin, G. V., Tourkova, I. L. & Shurin, M. R. Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J. Transl. Med.7, 58 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hartmann, J. T., Haap, M., Kopp, H. G. & Lipp, H. P. Tyrosine kinase inhibitors — a review on pharmacology, metabolism and side effects. Curr. Drug Metab.10, 470–481 (2009). ArticleCASPubMed Google Scholar
Monsuez, J. J., Charniot, J. C., Vignat, N. & Artigou, J. Y. Cardiac side-effects of cancer chemotherapy. Int. J. Cardiol.144, 3–15 (2010). ArticlePubMed Google Scholar
Chan, G. & Pilichowska, M. Complete remission in a patient with acute myelogenous leukemia treated with erlotinib for non small-cell lung cancer. Blood110, 1079–1080 (2007). ArticleCASPubMed Google Scholar
Pitini, V., Arrigo, C. & Altavilla, G. Erlotinib in a patient with acute myelogenous leukemia and concomitant non-small-cell lung cancer. J. Clin. Oncol.26, 3645–3646 (2008). In the studies published in reference 107 and reference 108, patients who were simultaneously affected by lung cancer and leukaemia were treated with erlotinib or gefitinib for the first condition and experienced complete leukaemic remission; this demonstrated the existence of therapeutic off-target mechanisms ignited by EGFR inhibitors. ArticlePubMed Google Scholar
Boehrer, S. et al. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood111, 2170–2180 (2008). ArticleCASPubMed Google Scholar
Boehrer, S. et al. Erlotinib antagonizes constitutive activation of SRC family kinases and mTOR in acute myeloid leukemia. Cell Cycle10, 3168–3175 (2011). ArticleCASPubMed Google Scholar
Pollack, B. P., Sapkota, B. & Cartee, T. V. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin. Cancer Res.17, 4400–4413 (2011). ArticleCASPubMed Google Scholar
Garrido, G. et al. Induction of immunogenic apoptosis by blockade of epidermal growth factor receptor activation with a specific antibody. J. Immunol.187, 4954–4966 (2011). ArticleCASPubMed Google Scholar
Luo, Q. et al. Erlotinib inhibits T-cell-mediated immune response via down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. Toxicol. Appl. Pharmacol.251, 130–136 (2011). ArticleCASPubMed Google Scholar
Chen, C. I., Maecker, H. T. & Lee, P. P. Development and dynamics of robust T-cell responses to CML under imatinib treatment. Blood111, 5342–5349 (2008). ArticleCASPubMedPubMed Central Google Scholar
Catellani, S., Pierri, I., Gobbi, M., Poggi, A. & Zocchi, M. R. Imatinib treatment induces CD5+ B lymphocytes and IgM natural antibodies with anti-leukemic reactivity in patients with chronic myelogenous leukemia. PLoS ONE6, e18925 (2011). ArticleCASPubMedPubMed Central Google Scholar
Larmonier, N. et al. Imatinib mesylate inhibits CD4+CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL− tumors. J. Immunol.181, 6955–6963 (2008). ArticleCASPubMed Google Scholar
Balachandran, V. P. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nature Med.17, 1094–1100 (2011). This article demonstrates that the immunostimulatory properties of imatinib (at least in part) result from a shift in the ratio between effector T cells and Tregcells; this ratio is secondary to the imatinib-mediated downregulation of indoleamine 2,3-dioxygenase in cancer cells. ArticleCASPubMed Google Scholar
Gao, H. et al. Imatinib mesylate suppresses cytokine synthesis by activated CD4 T cells of patients with chronic myelogenous leukemia. Leukemia19, 1905–1911 (2005). ArticleCASPubMed Google Scholar
Seggewiss, R. et al. Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood105, 2473–2479 (2005). ArticleCASPubMed Google Scholar
Leder, C., Ortler, S., Seggewiss, R., Einsele, H. & Wiendl, H. Modulation of T-effector function by imatinib at the level of cytokine secretion. Exp. Hematol.35, 1266–1271 (2007). ArticleCASPubMed Google Scholar
Sinai, P. et al. Imatinib mesylate inhibits antigen-specific memory CD8 T cell responses in vivo. J. Immunol.178, 2028–2037 (2007). ArticleCASPubMed Google Scholar
Adotevi, O. et al. A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J. Immunother.33, 991–998 (2010). ArticleCASPubMed Google Scholar
Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res.15, 2148–2157 (2009). ArticleCASPubMed Google Scholar
Finke, J. H. et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin. Cancer Res.14, 6674–6682 (2008). ArticleCASPubMed Google Scholar
Desar, I. M. et al. Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int. J. Cancer129, 507–512 (2011). ArticleCASPubMed Google Scholar
Xin, H. et al. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res.69, 2506–2513 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dalton, J. E. et al. Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice. J. Clin. Invest.120, 1204–1216 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hipp, M. M. et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood111, 5610–5620 (2008). ArticleCASPubMed Google Scholar
Fei, F. et al. Dasatinib inhibits the proliferation and function of CD4+CD25+ regulatory T cells. Br. J. Haematol.144, 195–205 (2009). ArticleCASPubMed Google Scholar
Fei, F. et al. Dasatinib exerts an immunosuppressive effect on CD8+ T cells specific for viral and leukemia antigens. Exp. Hematol.36, 1297–1308 (2008). ArticleCASPubMed Google Scholar
Weichsel, R. et al. Profound inhibition of antigen-specific T-cell effector functions by dasatinib. Clin. Cancer Res.14, 2484–2491 (2008). ArticleCASPubMed Google Scholar
Schade, A. E. et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood111, 1366–1377 (2008). ArticleCASPubMedPubMed Central Google Scholar
Fraser, C. K. et al. Dasatinib inhibits recombinant viral antigen-specific murine CD4+ and CD8+ T-cell responses and NK-cell cytolytic activity in vitro and in vivo. Exp. Hematol.37, 256–265 (2009). ArticleCASPubMed Google Scholar
Fraser, C. K. et al. Dasatinib inhibits the secretion of TNF-α following TLR stimulation in vitro and in vivo. Exp. Hematol.37, 1435–1444 (2009). ArticleCASPubMed Google Scholar
Blake, S., Hughes, T. P., Mayrhofer, G. & Lyons, A. B. The Src/ABL kinase inhibitor dasatinib (BMS-354825) inhibits function of normal human T-lymphocytes in vitro. Clin. Immunol.127, 330–339 (2008). ArticleCASPubMed Google Scholar
Chen, J. et al. Nilotinib hampers the proliferation and function of CD8+ T lymphocytes through inhibition of T cell receptor signalling. J. Cell. Mol. Med.12, 2107–2118 (2008). ArticleCASPubMedPubMed Central Google Scholar
Salih, J. et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int. J. Cancer127, 2119–2128 (2010). ArticleCASPubMed Google Scholar
Nencioni, A. et al. Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood108, 551–558 (2006). ArticleCASPubMed Google Scholar
Basler, M., Lauer, C., Beck, U. & Groettrup, M. The proteasome inhibitor bortezomib enhances the susceptibility to viral infection. J. Immunol.183, 6145–6150 (2009). ArticleCASPubMed Google Scholar
Heider, U. et al. Decrease in CD4+ T-cell counts in patients with multiple myeloma treated with bortezomib. Clin. Lymphoma Myeloma Leuk.10, 134–137 (2010). ArticleCASPubMed Google Scholar
Blanco, B. et al. Treatment with bortezomib of human CD4+ T cells preserves natural regulatory T cells and allows the emergence of a distinct suppressor T-cell population. Haematologica94, 975–983 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Rev. Drug Discov.8, 627–644 (2009). ArticleCAS Google Scholar
Koyasu, S. The role of PI3K in immune cells. Nature Immunol.4, 313–319 (2003). ArticleCAS Google Scholar
Carrington, E. M. et al. BH3 mimetics antagonizing restricted prosurvival Bcl-2 proteins represent another class of selective immune modulatory drugs. Proc. Natl Acad. Sci. USA107, 10967–10971 (2010). ArticlePubMedPubMed Central Google Scholar
Weiner, L. M., Surana, R. & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Rev. Immunol.10, 317–327 (2010). This article summarizes recent advances in the development and use of immunostimulatory monoclonal antibodies for anticancer therapy. ArticleCAS Google Scholar
Winiarska, M., Glodkowska-Mrowka, E., Bil, J. & Golab, J. Molecular mechanisms of the antitumor effects of anti-CD20 antibodies. Front. Biosci.16, 277–306 (2011). ArticleCAS Google Scholar
Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nature Rev. Immunol.9, 729–740 (2009). ArticleCAS Google Scholar
Marechal, R. et al. Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients. BMC Cancer10, 340 (2010). ArticleCASPubMedPubMed Central Google Scholar
Banerjee, D. et al. Enhanced T-cell responses to glioma cells coated with the anti-EGF receptor antibody and targeted to activating FcγRs on human dendritic cells. J. Immunother.31, 113–120 (2008). ArticleCASPubMed Google Scholar
zum Büschenfelde, C. M., Hermann, C., Schmidt, B., Peschel, C. & Bernhard, H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res.62, 2244–2247 (2002). PubMed Google Scholar
Arnould, L. et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br. J. Cancer94, 259–267 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wada, J. et al. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res.29, 881–888 (2009). CASPubMed Google Scholar
Manzoni, M. et al. Immunological effects of bevacizumab-based treatment in metastatic colorectal cancer. Oncology79, 187–196 (2010). ArticleCASPubMed Google Scholar
Osada, T. et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother.57, 1115–1124 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res.70, 6171–6180 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pander, J. et al. Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab. Clin. Cancer Res.17, 5668–5673 (2011). ArticleCASPubMed Google Scholar
Kline, J. & Gajewski, T. F. Clinical development of mAbs to block the PD1 pathway as an immunotherapy for cancer. Curr. Opin. Investig. Drugs11, 1354–1359 (2010). CASPubMed Google Scholar
Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med.207, 2175–2186 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998). ArticleCASPubMed Google Scholar
Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med.207, 2187–2194 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, W. et al. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+CD25Hi regulatory T cells. Int. Immunol.21, 1065–1077 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yuan, J. et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc. Natl Acad. Sci. USA105, 20410–20415 (2008). ArticlePubMedPubMed Central Google Scholar
Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science331, 1612–1616 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jiang, Q. et al. mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Res.71, 4074–4084 (2011). ArticleCASPubMedPubMed Central Google Scholar
Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med.364, 2517–2526 (2011). ArticleCASPubMed Google Scholar
Norton, J. T., Hayashi, T., Crain, B., Corr, M. & Carson, D. A. Role of IL-1 receptor-associated kinase-M (IRAK-M) in priming of immune and inflammatory responses by nitrogen bisphosphonates. Proc. Natl Acad. Sci. USA108, 11163–11168 (2011). ArticlePubMedPubMed Central Google Scholar
Rack, B. et al. Effect of zoledronate on persisting isolated tumour cells in patients with early breast cancer. Anticancer Res.30, 1807–1813 (2010). CASPubMed Google Scholar
Cabillic, F. et al. Aminobisphosphonate-pretreated dendritic cells trigger successful Vγ9Vδ2 T cell amplification for immunotherapy in advanced cancer patients. Cancer Immunol. Immunother.59, 1611–1619 (2010). ArticleCASPubMed Google Scholar
Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nature Rev. Cancer10, 561–574 (2010). ArticleCAS Google Scholar
Schmudde, M. et al. Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett.272, 110–121 (2008). ArticleCASPubMed Google Scholar
Lesterhuis, W. J., Haanen, J. B. & Punt, C. J. Cancer immunotherapy — revisited. Nature Rev. Drug Discov.10, 591–600 (2011). ArticleCAS Google Scholar
Emens, L. A. et al. Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte–macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J. Clin. Oncol.27, 5911–5918 (2009). ArticleCASPubMedPubMed Central Google Scholar
Arlen, P. M. et al. A randomized Phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin. Cancer Res.12, 1260–1269 (2006). ArticleCASPubMedPubMed Central Google Scholar
Garnett, C. T., Schlom, J. & Hodge, J. W. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin. Cancer Res.14, 3536–3544 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lesterhuis, W. J. et al. A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients. Br. J. Cancer103, 1415–1421 (2010). ArticleCASPubMedPubMed Central Google Scholar
Narita, M. et al. WT1 peptide vaccination in combination with imatinib therapy for a patient with CML in the chronic phase. Int. J. Med. Sci.7, 72–81 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez-Aparicio, M. et al. Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut60, 341–349 (2011). ArticleCASPubMed Google Scholar
Zappasodi, R. et al. Improved clinical outcome in indolent B-cell lymphoma patients vaccinated with autologous tumor cells experiencing immunogenic death. Cancer Res.70, 9062–9072 (2010). This article provides proof of principle that the propensity of tumour cells to undergo immunogenic cell deathin vitrocan influence the therapeutic outcome of DC-based anticancer vaccines. ArticleCASPubMed Google Scholar
Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Rev. Cancer8, 299–308 (2008). ArticleCAS Google Scholar
Nistico, P. et al. Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int. J. Cancer124, 130–139 (2009). ArticleCASPubMed Google Scholar
Palermo, B. et al. Dacarbazine treatment before peptide vaccination enlarges T-cell repertoire diversity of melan-A-specific, tumor-reactive CTL in melanoma patients. Cancer Res.70, 7084–7092 (2010). ArticleCASPubMed Google Scholar
Kyte, J. A. et al. Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin. Cancer Res.17, 4568–4580 (2011). ArticleCASPubMed Google Scholar
Rettig, L. et al. Gemcitabine depletes regulatory T-cells in human and mice and enhances triggering of vaccine-specific cytotoxic T-cells. Int. J. Cancer129, 832–838 (2011). ArticleCASPubMed Google Scholar
Adams, S. et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol.181, 776–784 (2008). ArticleCASPubMed Google Scholar
Davis, I. D. et al. Blood dendritic cells generated with Flt3 ligand and CD40 ligand prime CD8+ T cells efficiently in cancer patients. J. Immunother.29, 499–511 (2006). ArticlePubMed Google Scholar
Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol.29, 917–924 (2011). ArticlePubMedPubMed Central Google Scholar
Muraoka, D. et al. Peptide vaccine induces enhanced tumor growth associated with apoptosis induction in CD8+ T cells. J. Immunol.185, 3768–3776 (2010). ArticleCASPubMed Google Scholar
Bourquin, C., Schreiber, S., Beck, S., Hartmann, G. & Endres, S. Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer. Int. J. Cancer118, 2790–2795 (2006). ArticleCASPubMed Google Scholar
Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a Phase I/II study. J. Clin. Oncol.28, 4324–4332 (2010). ArticlePubMedPubMed Central Google Scholar
Zoglmeier, C. et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin. Cancer Res.17, 1765–1775 (2011). ArticleCASPubMed Google Scholar
Wang, Y., Wang, X. Y., Subjeck, J. R., Shrikant, P. A. & Kim, H. L. Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br. J. Cancer104, 643–652 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yang, X. F. Factors regulating apoptosis and homeostasis of CD4+CD25highFOXP3+ regulatory T cells are new therapeutic targets. Front. Biosci.13, 1472–1499 (2008). ArticleCASPubMed Google Scholar
Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Rev. Immunol.7, 41–51 (2007). ArticleCAS Google Scholar
Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol.13, 1235–1242 (2006). ArticleCASPubMed Google Scholar
Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science330, 827–830 (2010). ArticleCASPubMed Google Scholar
Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science328, 749–752 (2010). ArticleCASPubMed Google Scholar
Schietinger, A., Philip, M., Liu, R. B., Schreiber, K. & Schreiber, H. Bystander killing of cancer requires the cooperation of CD4+ and CD8+ T cells during the effector phase. J. Exp. Med.207, 2469–2477 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell140, 798–804 (2010). ArticleCASPubMed Google Scholar
Kepp, O. et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev.30, 61–69 (2011). ArticleCASPubMed Google Scholar
Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell18, 485–498 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chakraborty, M. et al. The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing. Clin. Cancer Res.14, 4241–4249 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lynch, T. et al. Phase II trial of ipilimumab (IPI) and paclitaxel/carboplatin (P/C) in first-line stage IIIb/IV non-small cell lung cancer (NSCLC). J. Clin. Oncol. (Meeting Abstracts) 28, 7531 (2010). Article Google Scholar
Gabrilovich, D. I. Combination of chemotherapy and immunotherapy for cancer: a paradigm revisited. Lancet Oncol.8, 2–3 (2007). ArticlePubMed Google Scholar
Scripture, C. D. & Figg, W. D. Drug interactions in cancer therapy. Nature Rev. Cancer6, 546–558 (2006). ArticleCAS Google Scholar
Kubecova, M., Kolostova, K., Pinterova, D., Kacprzak, G. & Bobek, V. Cimetidine: an anticancer drug? Eur. J. Pharm. Sci.42, 439–444 (2011). ArticleCASPubMed Google Scholar
Kroemer, G. & Pouyssegur, J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell13, 472–482 (2008). ArticleCASPubMed Google Scholar
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science331, 1565–1570 (2011). ArticleCASPubMed Google Scholar
Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nature Rev. Cancer7, 911–924 (2007). ArticleCAS Google Scholar
Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nature Rev. Immunol.4, 641–648 (2004). ArticleCAS Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Morselli, E. et al. Oncosuppressive functions of autophagy. Antioxid. Redox Signal.14, 2251–2269 (2011). ArticleCASPubMed Google Scholar
Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nature Rev. Cancer7, 961–967 (2007). ArticleCAS Google Scholar
Mueller, M. M. & Fusenig, N. E. Friends or foes — bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer4, 839–849 (2004). ArticleCAS Google Scholar
Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nature Rev. Immunol.9, 353–363 (2009). ArticleCAS Google Scholar
Kepp, O., Tesniere, A., Zitvogel, L. & Kroemer, G. The immunogenicity of tumor cell death. Curr. Opin. Oncol.21, 71–76 (2009). ArticleCASPubMed Google Scholar
Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 15 Jul 2011 (doi:10.1038/cdd.2011.96). This review contains up-to-date recommendations for the functional classification of cell death subroutines, as formulated by the Nomenclature Committee on Cell Death in 2012.
Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ.16, 3–11 (2009). This review contains recommendations for the morphological classification of cell death subroutines, as formulated by the Nomenclature Committee on Cell Death in 2009. ArticleCASPubMed Google Scholar
Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med.13, 1050–1059 (2007). ArticleCASPubMed Google Scholar
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nature Med.15, 1170–1178 (2009). ArticleCASPubMed Google Scholar
Martins, I. et al. Chemotherapy induces ATP release from tumor cells. Cell Cycle8, 3723–3728 (2009). ArticleCASPubMed Google Scholar
Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents. Science (in the press).
Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature467, 863–867 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. et al. VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling. Circ. Res.107, 408–417 (2010). ArticleCASPubMedPubMed Central Google Scholar