Chen, L., Magliano, D. J. & Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat. Rev. Endocrinol.8, 228–236 (2012). ArticleCAS Google Scholar
Prentice, A. M. The emerging epidemic of obesity in developing countries. Int. J. Epidemiol.35, 93–99 (2006). ArticlePubMed Google Scholar
Bray, G. A. & Tartaglia, L. A. Medicinal strategies in the treatment of obesity. Nature404, 672–677 (2000). ArticleCASPubMed Google Scholar
Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol.7, 885–896 (2006). ArticleCASPubMed Google Scholar
Arner, P. & Langin, D. Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends Endocrinol. Metab.25, 255–262 (2014). ArticleCASPubMed Google Scholar
Johnson, A. M. & Olefsky, J. M. The origins and drivers of insulin resistance. Cell152, 673–684 (2013). ArticleCASPubMed Google Scholar
Turer, A. T. & Scherer, P. E. Adiponectin: mechanistic insights and clinical implications. Diabetologia55, 2319–2326 (2012). ArticleCASPubMed Google Scholar
Hotamisligil, G. S. Inflammation and metabolic disorders. Nature444, 860–867 (2006). CASPubMed Google Scholar
Rosen, E. D. & Spiegelman, B. M. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol.16, 145–171 (2000). ArticleCASPubMed Google Scholar
Ryden, M., Andersson, D. P., Bernard, S., Spalding, K. & Arner, P. Adipocyte triglyceride turnover and lipolysis in lean and overweight subjects. J. Lipid Res.54, 2909–2913 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev.84, 277–359 (2004). ArticleCASPubMed Google Scholar
Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res.39, D152–D157 (2011). ArticleCASPubMed Google Scholar
Huang, J. C. et al. Using expression profiling data to identify human microRNA targets. Nat. Methods4, 1045–1049 (2007). ArticleCASPubMed Google Scholar
Ulitsky, I., Laurent, L. C. & Shamir, R. Towards computational prediction of microRNA function and activity. Nucleic Acids Res.38, e160 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Gennarino, V. A. et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res.22, 1163–1172 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Huang, G. T., Athanassiou, C. & Benos, P. V. mirConnX: condition-specific mRNA–microRNA network integrator. Nucleic Acids Res.39, W416–W423 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Jayaswal, V., Lutherborrow, M., Ma, D. D. & Yang, Y. H. Identification of microRNA–mRNA modules using microarray data. BMC Genomics12, 138 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Le Bechec, A. et al. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model. BMC Bioinformatics12, 67 (2011). ArticlePubMedPubMed Central Google Scholar
Xu, J. et al. MiRNA–miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res.39, 825–836 (2011). ArticleCASPubMed Google Scholar
Xie, H., Lim, B. & Lodish, H. F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes58, 1050–1057 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Heneghan, H. M., Miller, N., McAnena, O. J., O'Brien, T. & Kerin, M. J. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J. Clin. Endocrinol. Metab.96, E846–E850 (2011). ArticleCASPubMed Google Scholar
Keller, P. et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocr. Disord.11, 7 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Martinelli, R. et al. miR-519d overexpression is associated with human obesity. Obesity (Silver Spring)18, 2170–2176 (2010). ArticleCAS Google Scholar
Meerson, A. et al. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNFα. Diabetologia56, 1971–1979 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Ortega, F. J. et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE5, e9022 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Capobianco, V. et al. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity. J. Proteome Res.11, 3358–3369 (2012). ArticleCASPubMed Google Scholar
Chen, L. et al. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol. Cell. Endocrinol.393, 65–74 (2014). ArticleCASPubMed Google Scholar
Chou, W. W. et al. Decreased microRNA-221 is associated with high levels of TNFα in human adipose tissue-derived mesenchymal stem cells from obese woman. Cell Physiol. Biochem.32, 127–137 (2013). ArticleCASPubMed Google Scholar
Diawara, M. R. et al. Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men. PLoS ONE9, e91375 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Oger, F. et al. Cell-specific dysregulation of microRNA expression in obese white adipose tissue. J. Clin. Endocrinol. Metab.99, 2821–2833 (2014). ArticleCASPubMed Google Scholar
Dahlman, I. et al. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor α. Diabetes55, 1792–1799 (2006). ArticleCASPubMed Google Scholar
Klimcakova, E. et al. Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J. Clin. Endocrinol. Metab.96, E73–E82 (2011). ArticleCASPubMed Google Scholar
Hilton, C., Neville, M. J. & Karpe, F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int. J. Obesity37, 325–332 (2013). ArticleCAS Google Scholar
Neville, M. J., Collins, J. M., Gloyn, A. L., McCarthy, M. I. & Karpe, F. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring)19, 888–892 (2011). ArticleCAS Google Scholar
Civelek, M. et al. Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Hum. Mol. Genet.22, 3023–3037 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Vohl, M. C. et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes. Res.12, 1217–1222 (2004). ArticleCASPubMed Google Scholar
Yu, J. et al. Expression profiling of PPARγ-regulated microRNAs in human subcutaneous and visceral adipogenesis in both genders. Endocrinology155, 2155–2165 (2014). ArticleCASPubMed Google Scholar
Rantalainen, M. et al. MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven. PLoS ONE6, e27338 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Honardoost, M., Sarookhani, M. R., Arefian, E. & Soleimani, M. Insulin resistance associated genes and miRNAs. Appl. Biochem. Biotechnol.174, 63–80 (2014). ArticleCASPubMed Google Scholar
Wu, H. L. et al. The expression of the miR-25/93/106b family of micro-RNAs in the adipose tissue of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab.99, E2754–E2761 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, Y. H. et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes62, 2278–2286 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Lorente-Cebrian, S. et al. MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNFα. PLoS ONE9, e86800 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Lin, Y. Y. et al. KSRP and microRNA 145 are negative regulators of lipolysis in white adipose tissue. Mol. Cell. Biol.34, 2339–2349 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Kang, M. et al. Role of microRNA-21 in regulating 3T3-L1 adipocyte differentiation and adiponectin expression. Mol. Biol. Rep.40, 5027–5034 (2013). ArticleCASPubMed Google Scholar
Shi, Z. et al. Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERα expression in estrogen-induced insulin resistance. Endocrinology155, 1982–1990 (2014). ArticleCASPubMed Google Scholar
Ferland-McCollough, D., Ozanne, S. E., Siddle, K., Willis, A. E. & Bushell, M. The involvement of microRNAs in type 2 diabetes. Biochem. Soc. Trans.38, 1565–1570 (2010). ArticleCASPubMed Google Scholar
Maury, E. & Brichard, S. M. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol.314, 1–16 (2010). ArticleCASPubMed Google Scholar
Ge, Q., Brichard, S., Yi, X. & Li, Q. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J. Immunol. Res.2014, 987285 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Hulsmans, M., De Keyzer, D. & Holvoet, P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J.25, 2515–2527 (2011). ArticleCASPubMed Google Scholar
Strum, J. C. et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol. Endocrinol.23, 1876–1884 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Zhuang, G. et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation125, 2892–2903 (2012). ArticleCASPubMed Google Scholar
Shi, C. et al. IL-6 and TNFα induced obesity-related inflammatory response through transcriptional regulation of miR-146b. J. Interferon Cytokine Res.34, 342–348 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Zhu, L. et al. MiR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochem. Biophys.68, 283–290 (2014). ArticleCASPubMed Google Scholar
Kim, C. et al. TNFα -induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation. FEBS Lett.587, 3853–3858 (2013). ArticleCASPubMed Google Scholar
Ge, Q., Gerard, J., Noel, L., Scroyen, I. & Brichard, S. M. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology153, 5285–5296 (2012). ArticleCASPubMed Google Scholar
Subedi, A. & Park, P. H. Autocrine and paracrine modulation of microRNA-155 expression by globular adiponectin in RAW 264.7 macrophages: involvement of MAPK/NF-κB pathway. Cytokine64, 638–641 (2013). ArticleCASPubMed Google Scholar
Parra, P., Serra, F. & Palou, A. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS ONE5, e13005 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Lefterova, M. I. & Lazar, M. A. New developments in adipogenesis. Trends Endocrinol. Metab.20, 107–114 (2009). ArticleCASPubMed Google Scholar
Oskowitz, A. Z. et al. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc. Natl Acad. Sci. USA105, 18372–18377 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mudhasani, R., Imbalzano, A. N. & Jones, S. N. An essential role for Dicer in adipocyte differentiation. J. Cell. Biochem.110, 812–816 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Ling, H. et al. The physiological and pathophysiological roles of adipocyte miRNAs. Biochem. Cell Biol.91, 195–202 (2013). ArticleCASPubMed Google Scholar
Peng, Y. et al. MicroRNAs: Emerging roles in adipogenesis and obesity. Cell. Signal.26, 1888–1896 (2014). ArticleCASPubMed Google Scholar
Alexander, R., Lodish, H. & Sun, L. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin. Ther. Targets15, 623–636 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Son, Y. H., Ka, S., Kim, A. Y. & Kim, J. B. Regulation of adipocyte differentiation via microRNAs. Endocrinol. Metab. (Seoul)29, 122–135 (2014). Article Google Scholar
Sun, T., Fu, M., Bookout, A. L., Kliewer, S. A. & Mangelsdorf, D. J. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol. Endocrinol.23, 925–931 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Kim, Y. J., Hwang, S. J., Bae, Y. C. & Jung, J. S. MiR-21 regulates adipogenic differentiation through the modulation of TGFβ signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells27, 3093–3102 (2009). CASPubMed Google Scholar
Huang, S. et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev.21, 2531–2540 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Karbiener, M. et al. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem. Biophys. Res. Commun.390, 247–251 (2009). ArticleCASPubMed Google Scholar
Sun, F. et al. Characterization of function and regulation of miR-24-1 and miR-31. Biochem. Biophys. Res. Commun.380, 660–665 (2009). ArticleCASPubMed Google Scholar
Tang, Y. F. et al. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS13, 331–336 (2009). ArticleCASPubMed Google Scholar
Lee, E. K. et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol. Cell Biol.31, 626–638 (2011). ArticleCASPubMed Google Scholar
Yang, Z. et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev.20, 259–267 (2011). ArticleCASPubMed Google Scholar
Guo, Y., Chen, Y., Zhang, Y., Chen, L. & Mo, D. Up-regulated miR-145 expression inhibits porcine preadipocytes differentiation by targeting IRS1. Int. J. Biol. Sci.8, 1408–1417 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, S., Yang, Y. & Wu, J. TNFα-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem. Biophys. Res. Commun.414, 618–624 (2011). ArticleCASPubMed Google Scholar
Peng, Y. et al. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int. J. Biochem. Cell Biol.45, 1585–1593 (2013). ArticleCASPubMed Google Scholar
Bork, S. et al. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J. Cell Physiol.226, 2226–2234 (2011). ArticleCASPubMed Google Scholar
Kinoshita, M. et al. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol. Endocrinol.24, 1978–1987 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, Q. et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc. Natl Acad. Sci. USA105, 2889–2894 (2008). ArticleCASPubMedPubMed Central Google Scholar
Esau, C. et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem.279, 52361–52365 (2004). ArticleCASPubMed Google Scholar
Karbiener, M. et al. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol.8, 850–860 (2011). ArticleCASPubMed Google Scholar
Zaragosi, L. E. et al. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol.12, R64 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Kim, S. Y. et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem. Biophys. Res. Commun.392, 323–328 (2010). ArticleCASPubMed Google Scholar
Zhang, J. F. et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol. Biol. Cell22, 3955–3961 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Skarn, M. et al. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev.21, 873–883 (2012). ArticleCASPubMed Google Scholar
Peirce, V., Carobbio, S. & Vidal-Puig, A. The different shades of fat. Nature510, 76–83 (2014). ArticleCASPubMed Google Scholar
Beranger, G. E. et al. In vitro brown and “brite”/“beige” adipogenesis: human cellular models and molecular aspects. Biochim. Biophys. Acta1831, 905–914 (2013). ArticleCASPubMed Google Scholar
Karbiener, M. et al. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells32, 1578–1590 (2014). ArticleCASPubMed Google Scholar
Mori, M., Nakagami, H., Rodriguez-Araujo, G., Nimura, K. & Kaneda, Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol.10, e1001314 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, Y. et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun.4, 1769 (2013). ArticlePubMedCAS Google Scholar
Martinez, N. J. & Walhout, A. J. The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays31, 435–445 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Schadt, E. E. Molecular networks as sensors and drivers of common human diseases. Nature461, 218–223 (2009). ArticleCASPubMed Google Scholar
Sato, F., Tsuchiya, S., Meltzer, S. J. & Shimizu, K. MicroRNAs and epigenetics. FEBS J.278, 1598–1609 (2011). ArticleCASPubMed Google Scholar
Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol.11, 252–263 (2010). ArticleCASPubMed Google Scholar
Hagen, J. W. & Lai, E. C. microRNA control of cell–cell signaling during development and disease. Cell Cycle7, 2327–2332 (2008). ArticlePubMedCAS Google Scholar
Ichimura, A., Ruike, Y., Terasawa, K. & Tsujimoto, G. miRNAs and regulation of cell signaling. FEBS J.278, 1610–1618 (2011). ArticleCASPubMed Google Scholar
Herranz, H. & Cohen, S. M. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev.24, 1339–1344 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Meyer, S. U. et al. Posttranscriptional regulatory networks: from expression profiling to integrative analysis of mRNA and microRNA data. Methods Mol. Biol.1160, 165–188 (2014). ArticleCASPubMed Google Scholar
Tsang, J. S., Ebert, M. S. & van Oudenaarden, A. Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol. Cell38, 140–153 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell26, 753–767 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Kulyté, A. et al. Additive effects of miRNAs and transcription factors on CCL2 production in human white adipose tissue. Diabetes63, 1248–1258 (2014). ArticleCASPubMed Google Scholar
Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol.10, 126–139 (2009). ArticleCASPubMed Google Scholar
Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA108, 5003–5008 (2011). ArticleCASPubMedPubMed Central Google Scholar
Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res.39, 7223–7233 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Mathivanan, S., Ji, H. & Simpson, R. J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics73, 1907–1920 (2010). ArticleCASPubMed Google Scholar
Li, L. et al. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS ONE7, e46957 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Williams, Z. et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc. Natl Acad. Sci. USA110, 4255–4260 (2013). ArticleCASPubMedPubMed Central Google Scholar
Blondal, T. et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods59, S1–S6 (2013). ArticleCASPubMed Google Scholar
Hu, Z. et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol.28, 1721–1726 (2010). ArticlePubMed Google Scholar
Ogawa, R. et al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem. Biophys. Res. Commun.398, 723–729 (2010). ArticleCASPubMed Google Scholar
Muller, G., Schneider, M., Biemer-Daub, G. & Wied, S. Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal23, 1207–1223 (2011). ArticleCASPubMed Google Scholar
Wang, Y. C. et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia56, 2275–2285 (2013). ArticleCASPubMed Google Scholar
Deng, Z. B. et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes58, 2498–2505 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Koeck, E. S. et al. Adipocyte exosomes induce transforming growth factor β pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J. Surg. Res.192, 268–275 (2014). ArticleCASPubMed Google Scholar
Guay, C. & Regazzi, R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol.9, 513–521 (2013). ArticleCASPubMed Google Scholar
Rome, S. Are extracellular microRNAs involved in type 2 diabetes and related pathologies? Clin. Biochem.46, 937–945 (2013). ArticleCASPubMed Google Scholar
Karolina, D. S. et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab.97, E2271–E2276 (2012). ArticlePubMedCAS Google Scholar
Ortega, F. J. et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care37, 1375–1383 (2014). ArticleCASPubMed Google Scholar
Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res.107, 810–817 (2010). ArticleCASPubMed Google Scholar
Ortega, F. J. et al. Targeting the circulating microRNA signature of obesity. Clin. Chem.59, 781–792 (2013). ArticleCASPubMed Google Scholar
Wang, Y. T., Tsai, P. C., Liao, Y. C., Hsu, C. Y. & Juo, S. H. Circulating microRNAs have a sex-specific association with metabolic syndrome. J. Biomed. Sci.20, 72 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Prats-Puig, A. et al. Changes in circulating microRNAs are associated with childhood obesity. J. Clin. Endocrinol. Metab.98, E1655–E1660 (2013). ArticleCASPubMed Google Scholar
Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). ArticleCASPubMed Google Scholar
Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.3, 87–98 (2006). ArticleCASPubMed Google Scholar
Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature452, 896–899 (2008). ArticleCASPubMed Google Scholar
Wahid, F., Shehzad, A., Khan, T. & Kim, Y. Y. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta1803, 1231–1243 (2010). ArticleCASPubMed Google Scholar
US National Institutes of Health. ClinicalTrials.gov[online], (2014).
van Rooij, E., Purcell, A. L. & Levin, A. A. Developing microRNA therapeutics. Circ. Res.110, 496–507 (2012). ArticleCASPubMed Google Scholar
Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat. Rev. Drug Discov.9, 107–115 (2010). ArticleCASPubMed Google Scholar
Czech, M. P., Aouadi, M. & Tesz, G. J. RNAi-based therapeutic strategies for metabolic disease. Nat. Rev. Endocrinol.7, 473–484 (2011). ArticleCASPubMed Google Scholar
Li, Z. & Rana, T. M. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov.13, 622–638 (2014). ArticleCASPubMed Google Scholar
Xu, G. et al. Modulation of hsa-miR-26b levels following adipokine stimulation. Mol. Biol. Rep.40, 3577–3582 (2013). ArticleCASPubMed Google Scholar
Chen, T. et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc. Res.83, 131–139 (2009). ArticleCASPubMed Google Scholar
Estep, M. et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther.32, 487–497 (2010). ArticleCASPubMed Google Scholar
Zhu, L. et al. FFAs and adipokine-mediated regulation of hsa-miR-143 expression in human adipocytes. Mol. Biol. Rep.40, 5669–5675 (2013). ArticleCASPubMed Google Scholar
Hulsmans, M., Van Dooren, E., Mathieu, C. & Holvoet, P. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PLoS ONE7, e32794 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Huang, R. S., Hu, G. Q., Lin, B., Lin, Z. Y. & Sun, C. C. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J. Investig. Med.58, 961–967 (2010). ArticleCASPubMed Google Scholar
Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc. Res.79, 581–588 (2008). ArticleCASPubMed Google Scholar