- Jornayvaz, F. R., Samuel, V. T. & Shulman, G. I. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu. Rev. Nutr. 30, 273–290 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Reaven, G. M. The insulin resistance syndrome: definition and dietary approaches to treatment. Annu. Rev. Nutr. 25, 391–406 (2005).
Article CAS PubMed Google Scholar
- Guilherme, A., Virbasius, J. V., Puri, V. & Czech, M. P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Ergens, R. & Yukhimenko, S. S. Gyrodactylus somnaensis sp. n (Monogenea: Gyrodactylidae), a new fish parasite from the basin of the River Amur. Folia Parasitol. (Praha) 37, 313–314 (1990).
CAS Google Scholar
- Zheng, C. J. et al. Therapeutic targets: progress of their exploration and investigation of their characteristics. Pharmacol. Rev. 58, 259–279 (2006).
Article CAS PubMed Google Scholar
- De, A. & DiMarchi, R. D. Synthesis and characterization of ester-based prodrugs of glucagon-like peptide 1. Biopolymers 94, 448–456 (2010).
Article CAS PubMed Google Scholar
- Mello, C. C. & Conte, D. Jr. Revealing the world of RNA interference. Nature 431, 338–342 (2004).
Article CAS PubMed Google Scholar
- Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).
Article CAS PubMed Google Scholar
- Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2, 711–719 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Shabtai, M., Waltzer, W. C., Anaise, D., Miller, F. & Rapaport, F. T. Implication of IgA and complement in the alterations in renal blood flow associated with allograft rejection. Transplant Proc. 21, 352–353 (1989).
CAS PubMed Google Scholar
- Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25, 1149–1157 (2007).
Article CAS PubMed Google Scholar
- Sioud, M. Recent advances in small interfering RNA sensing by the immune system. N. Biotechnol. 27, 236–242 (2010).
Article CAS PubMed Google Scholar
- Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Tiemann, K. & Rossi, J. J. RNAi-based therapeutics-current status, challenges and prospects. EMBO Mol. Med. 1, 142–151 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9, 57–67 (2010).
Article CAS PubMed Google Scholar
- Vaishnaw, A. K. et al. A status report on RNAi therapeutics. Silence 1, 14 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).
Article CAS PubMed Google Scholar
- Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).
Article CAS PubMed Google Scholar
- Schroeder, A., Levins, C. G., Cortez, C., Langer, R. & Anderson, D. G. Lipid-based nanotherapeutics for siRNA delivery. J. Intern. Med. 267, 9–21 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Rozema, D. B. et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl Acad. Sci. USA 104, 12982–12987 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Sato, A., Takagi, M., Shimamoto, A., Kawakami, S. & Hashida, M. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials 28, 1434–1442 (2007).
Article CAS PubMed Google Scholar
- Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).
Article CAS PubMed Google Scholar
- Nishina, K. et al. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol. Ther. 16, 734–740 (2008).
Article CAS PubMed Google Scholar
- Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).
Article PubMed PubMed Central Google Scholar
- McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).
Article CAS PubMed Google Scholar
- Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 32, 107–108 (2002).
Article CAS PubMed Google Scholar
- Gomez-Valades, A. G. et al. Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice. Diabetes 57, 2199–2210 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Judge, A. D., Bola, G., Lee, A. C. & MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505 (2006).
Article CAS PubMed Google Scholar
- Kim, S. I. et al. Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol. Ther. 15, 1145–1152 (2007).
Article CAS PubMed Google Scholar
- Giladi, H. et al. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther. 8, 769–776 (2003).
Article CAS PubMed Google Scholar
- Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105, 11915–11920 (2008).
Article PubMed PubMed Central Google Scholar
- Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Akinc, A. et al. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol. Ther. 17, 872–879 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Watts, J. K., Deleavey, G. F. & Damha, M. J. Chemically modified siRNA: tools and applications. Drug Discov. Today 13, 842–855 (2008).
Article CAS PubMed Google Scholar
- Behlke, M. A. Chemical modification of siRNAs for in vivo use. Oligonucleotides 18, 305–319 (2008).
Article CAS PubMed Google Scholar
- Chernolovskaya, E. L. & Zenkova, M. A. Chemical modification of siRNA. Curr. Opin. Mol. Ther. 12, 158–167 (2010).
CAS PubMed Google Scholar
- Chiu, Y. L. & Rana, T. M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Allerson, C. R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904 (2005).
Article CAS PubMed Google Scholar
- Judge, A. & MacLachlan, I. Overcoming the innate immune response to small interfering RNA. Hum. Gene Ther. 19, 111–124 (2008).
Article CAS PubMed Google Scholar
- Veedu, R. N. & Wengel, J. Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem. Biodivers. 7, 536–542 (2010).
Article CAS PubMed Google Scholar
- Gaglione, M. & Messere, A. Recent progress in chemically modified siRNAs. Mini Rev. Med. Chem. 10, 578–595 (2010).
Article CAS PubMed Google Scholar
- Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010).
Article CAS PubMed Google Scholar
- Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).
Article CAS PubMed Google Scholar
- Krutzfeldt, J. et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35, 2885–2892 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Esau, C. C. Inhibition of microRNA with antisense oligonucleotides. Methods 44, 55–60 (2008).
Article CAS PubMed Google Scholar
- Visser, M. E., Kastelein, J. J. & Stroes, E. S. Apolipoprotein B synthesis inhibition: results from clinical trials. Curr. Opin. Lipidol. 21, 319–323 (2010).
Article CAS PubMed Google Scholar
- Unger, R. H. & Orci, L. Paracrinology of islets and the paracrinopathy of diabetes. Proc. Natl Acad. Sci. USA 107, 16009–16012 (2010).
Article PubMed PubMed Central Google Scholar
- Cheung, N., Mitchell, P. & Wong, T. Y. Diabetic retinopathy. Lancet 376, 124–136 (2010).
Article PubMed Google Scholar
- Boulton, A. J. What you can't feel can hurt you. J. Am. Podiatr. Med. Assoc. 100, 349–352 (2010).
Article PubMed Google Scholar
- Wu, S. C., Marston, W. & Armstrong, D. G. Wound care: the role of advanced wound-healing technologies. J. Am. Podiatr. Med. Assoc. 100, 385–394 (2010).
Article PubMed Google Scholar
- van Dieren, S., Beulens, J. W., van der Schouw, Y. T., Grobbee, D. E. & Neal, B. The global burden of diabetes and its complications: an emerging pandemic. Eur. J. Cardiovasc. Prev. Rehabil. 17 (Suppl. 1), S3–S8 (2010).
PubMed Google Scholar
- Postic, C. & Girard, J. The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab. 34, 643–648 (2008).
Article CAS PubMed Google Scholar
- Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7, 95–96 (2008).
Article CAS PubMed Google Scholar
- Abdelmalek, M. F. & Diehl, A. M. Nonalcoholic fatty liver disease as a complication of insulin resistance. Med. Clin. North Am. 91, 1125–1149, ix (2007).
Article CAS PubMed Google Scholar
- Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).
Article CAS PubMed Google Scholar
- Baigude, H., McCarroll, J., Yang, C. S., Swain, P. M. & Rana, T. M. Design and creation of new nanomaterials for therapeutic RNAi. ACS Chem. Biol. 2, 237–241 (2007).
Article CAS PubMed Google Scholar
- Seidah, N. G. et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA 100, 928–933 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Bassi, D. E., Fu, J., Lopez de Cicco, R. & Klein-Szanto, A. J. Proprotein convertases: “master switches” in the regulation of tumor growth and progression. Mol. Carcinog. 44, 151–161 (2005).
Article CAS PubMed Google Scholar
- Horton, J. D., Cohen, J. C. & Hobbs, H. H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci. 32, 71–77 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Allard, D. et al. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum. Mutat. 26, 497 (2005).
Article PubMed Google Scholar
- Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).
Article CAS PubMed Google Scholar
- Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl Acad. Sci. USA 102, 5374–5379 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Graham, M. J. et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid Res. 48, 763–767 (2007).
Article CAS PubMed Google Scholar
- Capeau, J. Insulin resistance and steatosis in humans. Diabetes Metab. 34, 649–657 (2008).
Article CAS PubMed Google Scholar
- Meshkani, R. & Adeli, K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin. Biochem. 42, 1331–1346 (2009).
Article CAS PubMed Google Scholar
- Fabbrini, E., Sullivan, S. & Klein, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51, 679–689 (2010).
Article CAS PubMed Google Scholar
- Liang, G. et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem. 277, 9520–9528 (2002).
Article CAS PubMed Google Scholar
- Iizuka, K., Bruick, R. K., Liang, G., Horton, J. D. & Uyeda, K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl Acad. Sci. USA 101, 7281–7286 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Moore, K. J., Rayner, K. J., Suárez, Y. & Fernández-Hernando, C. microRNAs and cholesterol metabolism. Trends Endocrinol. Metab. 21, 699–706 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).
Article CAS PubMed Google Scholar
- Xu, H. et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology 52, 1431–1442 (2010).
Article CAS PubMed Google Scholar
- Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).
Article CAS PubMed Google Scholar
- Elmén, J. et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 36, 1153–1162 (2008).
Article CAS PubMed Google Scholar
- Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).
Article CAS PubMed Google Scholar
- Gómez-Valadés, A. G. et al. Overcoming diabetes-induced hyperglycemia through inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP) with RNAi. Mol. Ther. 13, 401–410 (2006).
Article CAS PubMed Google Scholar
- Bosi, E. Metformin—the gold standard in type 2 diabetes: what does the evidence tell us? Diabetes Obes. Metab. 11 (Suppl. 2), 3–8 (2009).
Article CAS PubMed Google Scholar
- Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
Article CAS PubMed Google Scholar
- McCaffrey, A. P. et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat.Biotechnol. 21, 639–644 (2003).
Article PubMed Google Scholar
- Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351 (2003).
Article CAS PubMed Google Scholar
- Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).
Article PubMed Google Scholar
- Gao, S. et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol. Ther. 17, 1225–1233 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Weisman, S., Hirsch-Lerner, D., Barenholz, Y. & Talmon, Y. Nanostructure of cationic lipid-oligonucleotide complexes. Biophys. J. 87, 609–614 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Torchilin, V. P. et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta 1195, 11–20 (1994).
Article CAS PubMed Google Scholar
- Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8, 1188–1196 (2001).
Article CAS PubMed Google Scholar
- Xu, Y. & Szoka, F. C. Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35, 5616–5623 (1996).
Article CAS PubMed Google Scholar
- Zelphati, O. & Szoka, F. C. Jr. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl Acad. Sci. USA 93, 11493–11498 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Torchilin, V. P. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng. 8, 343–375 (2006).
Article CAS PubMed Google Scholar
- Malek, A. et al. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol. Appl. Pharmacol. 236, 97–108 (2009).
Article CAS PubMed Google Scholar
- Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).
Article CAS PubMed Google Scholar
- Hardy, O. T. et al. Body mass index-independent inflammation in omental adipose tissue associated with insulin resistance in morbid obesity. Surg. Obes. Relat. Dis. 7, 60–67 (2011).
Article PubMed Google Scholar
- Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Wentworth, J. M. et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59, 1648–1656 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Heilbronn, L. K. & Campbell, L. V. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr. Pharm. Des 14, 1225–1230 (2008).
Article CAS Google Scholar
- Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Halberg, N., Wernstedt-Asterholm, I. & Scherer, P. E. The adipocyte as an endocrine cell. Endocrinol. Metab. Clin. North Am. 37, 753–768 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Scherer, P. E. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537–1545 (2006).
Article CAS PubMed Google Scholar
- Wang, P., Mariman, E., Renes, J. & Keijer, J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell Physiol. 216, 3–13 (2008).
Article CAS PubMed Google Scholar
- Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281, 26602–26614 (2006).
Article CAS PubMed Google Scholar
- Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D. & Heinecke, J. W. Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes 57, 1254–1261 (2008).
Article CAS PubMed Google Scholar
- Inouye, K. E. et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 56, 2242–2250 (2007).
Article CAS PubMed Google Scholar
- Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293, 1673–1677 (2001).
Article CAS PubMed Google Scholar
- Goldfine, A. B. et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1, 36–43 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Hundal, R. S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109, 1321–1326 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).
Article CAS PubMed Google Scholar
- Dinarello, C. A. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N. Engl. J. Med. 343, 732–734 (2000).
Article CAS PubMed Google Scholar
- Barbuio, R., Milanski, M., Bertolo, M. B., Saad, M. J. & Velloso, L. A. Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet. J. Endocrinol. 194, 539–550 (2007).
Article CAS PubMed Google Scholar
- Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L. & Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 (1995).
Article CAS PubMed PubMed Central Google Scholar
- Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).
Article CAS PubMed Google Scholar
- Ofei, F., Hurel, S., Newkirk, J., Sopwith, M. & Taylor, R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996).
Article PubMed Google Scholar
- Bernstein, L. E., Berry, J., Kim, S., Canavan, B. & Grinspoon, S. K. Effects of etanercept in patients with the metabolic syndrome. Arch. Intern. Med. 166, 902–908 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005).
Article CAS PubMed Google Scholar
- Stanley, T. L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E146–E150 (2011).
Article CAS PubMed Google Scholar
- Choi, B. et al. Tumor necrosis factor α small interfering RNA decreases herpes simplex virus-induced inflammation in a mouse model. J. Dermatol. Sci. 52, 87–97 (2008).
Article CAS PubMed Google Scholar
- Nau, G. J. et al. A chemoattractant cytokine associated with granulomas in tuberculosis and silicosis. Proc. Natl Acad. Sci. USA 94, 6414–6419 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Giachelli, C. M., Lombardi, D., Johnson, R. J., Murry, C. E. & Almeida, M. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am. J. Pathol. 152, 353–358 (1998).
CAS PubMed PubMed Central Google Scholar
- Ashkar, S. et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860–864 (2000).
Article CAS PubMed Google Scholar
- Bruemmer, D. et al. Angiotensin II-accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J. Clin. Invest. 112, 1318–1331 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Nomiyama, T. et al. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J. Clin. Invest. 117, 2877–2888 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Kaneider, N. C., Leger, A. J. & Kuliopulos, A. Therapeutic targeting of molecules involved in leukocyte-endothelial cell interactions. FEBS J. 273, 4416–4424 (2006).
Article CAS PubMed Google Scholar
- Feral, C. C. et al. Blocking the α4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J. Clin. Invest. 116, 715–723 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Ghosh, S. et al. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348, 24–32 (2003).
Article CAS PubMed Google Scholar
- Miller, D. H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348, 15–23 (2003).
Article CAS PubMed Google Scholar
- Sheridan, C. Third Tysabri adverse case hits drug class. Nat. Rev. Drug Discov. 24, 357–358 (2005).
Article CAS Google Scholar
- Sheridan, C. Tysabri raises alarm bells on drug class. Nat. Biotechnol. 23, 397–398 (2005).
Article CAS PubMed Google Scholar
- Herre, J., Gordon, S. & Brown, G. D. Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol. Immunol. 40, 869–876 (2004).
Article CAS PubMed Google Scholar
- Aouadi, M. et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458, 1180–1184 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Tesz, G. J. et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem. J. doi: 10.1042/BJ20110352.
- Khoury, M. et al. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor alpha in experimental arthritis. Arthritis Rheum. 54, 1867–1877 (2006).
Article CAS PubMed Google Scholar
- Zheng, X., Vladau, C., Shunner, A. & Min, W. P. siRNA specific delivery system for targeting dendritic cells. Methods Mol. Biol. 623, 173–188 (2010).
Article CAS PubMed Google Scholar
- Zheng, X. et al. A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Blood 113, 2646–2654 (2009).
Article CAS PubMed Google Scholar
- Lee, S., Yang, S. C., Kao, C. Y., Pierce, R. H. & Murthy, N. Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo. Nucleic Acids Res. 37, e145 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Alshamsan, A. et al. STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol. Pharm. doi: 10.1021/mp100067u.
- Shukla, A. K., Verma, M. & Singh, K. N. Superoxide induced deprotection of 1,3-dithiolanes: a convenient method of dedithioacetalization. Indian J. Chem. 43B, 1748–1752 (2004).
CAS Google Scholar
- Lih-Brody, L. et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of inflammatory bowel disease. Dig. Dis. Sci. 41, 2078–2086 (1996).
Article CAS PubMed Google Scholar
- Brunner, T., Cohen, S. & Monsonego, A. Silencing of proinflammatory genes targeted to peritoneal-residing macrophages using siRNA encapsulated in biodegradable microspheres. Biomaterials 31, 2627–2636 (2010).
Article CAS PubMed Google Scholar
- Kumar, P. et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134, 577–586 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).
Article CAS PubMed Google Scholar
- Peer, D., Zhu, P., Carman, C. V., Lieberman, J. & Shimaoka, M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl Acad. Sci. USA 104, 4095–4100 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Kim, S. S. et al. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol. Ther. 18, 993–1001 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Subramanya, S. et al. Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production. J. Virol. 84, 2490–2501 (2010).
Article CAS PubMed Google Scholar
- Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).
Article CAS PubMed Google Scholar
- Wellen, K. E. & Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).
Article CAS PubMed Google Scholar
- Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl Acad. Sci. USA 107, 9765–9770 (2010).
Article PubMed PubMed Central Google Scholar
- Peipp, M. et al. A recombinant CD7-specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells. Cancer Res. 62, 2848–2855 (2002).
CAS PubMed Google Scholar
- Bremer, E. et al. Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res. 65, 3380–3388 (2005).
Article CAS PubMed Google Scholar
- Frankel, A. E. et al. Therapy of patients with T-cell lymphomas and leukemias using an anti-CD7 monoclonal antibody-ricin A chain immunotoxin. Leuk. Lymphoma 26, 287–298 (1997).
Article CAS PubMed Google Scholar
- Lazarovits, A. I. et al. Human mouse chimeric CD7 monoclonal antibody (SDZCHH380) for the prophylaxis of kidney transplant rejection. Transplant Proc. 25, 820–822 (1993).
CAS PubMed Google Scholar
- Peer, D., Park, E. J., Morishita, Y., Carman, C. V. & Shimaoka, M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319, 627–630 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Kim, S. S. et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol. Ther. 18, 370–376 (2010).
Article CAS PubMed Google Scholar
- Kortylewski, M. et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat. Biotechnol. 27, 925–932 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Herrmann, A. et al. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res. 70, 7455–7464 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 11, 1314–1321 (2005).
Article CAS PubMed Google Scholar
- Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Brahmamdam, P. et al. Targeted delivery of siRNA to cell death proteins in sepsis. Shock 32, 131–139 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Newgard, C. B., Brady, M. J., O'Doherty, R. M. & Saltiel, A. R. Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 49, 1967–1977 (2000).
Article CAS PubMed Google Scholar
- Gross, D. N., van den Heuvel, A. P. & Birnbaum, M. J. The role of FoxO in the regulation of metabolism. Oncogene 27, 2320–2336 (2008).
Article CAS PubMed Google Scholar
- Yamashita, H. et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl Acad. Sci. USA 98, 9116–9121 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Uyeda, K. & Repa, J. J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4, 107–110 (2006).
Article CAS PubMed Google Scholar
- Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Nowotny, M. & Yang, W. Structural and functional modules in RNA interference. Curr. Opin. Struct. Biol. 19, 286–293 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Naqvi, A. R., Islam, M. N., Choudhury, N. R. & Haq, Q. M. The fascinating world of RNA interference. Int. J. Biol. Sci. 5, 97–117 (2009).
Article CAS PubMed PubMed Central Google Scholar