- Smale, S. T. & Kadonaga, J. T. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479 (2003). An excellent in-depth review of well-studied core promoter elements.
Article CAS PubMed Google Scholar
- Gross, P. & Oelgeschlager, T. Core promoter-selective RNA polymerase II transcription. Biochem. Soc. Symp. 2006, 225–236 (2006).
Article Google Scholar
- Hampsey, M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62, 465–503 (1998).
CAS PubMed PubMed Central Google Scholar
- Thomas, M. C. & Chiang, C. M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006).
Article CAS PubMed Google Scholar
- Lewis, B. A. & Reinberg, D. The mediator coactivator complex: functional and physical roles in transcriptional regulation. J. Cell Sci. 116, 3667–3675 (2003).
Article CAS PubMed Google Scholar
- Black, J. C., Choi, J. E., Lombardo, S. R. & Carey, M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol. Cell 23, 809–818 (2006).
Article CAS PubMed Google Scholar
- Kadonaga, J. T. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004).
Article CAS PubMed Google Scholar
- Wasserman, W. W. & Sandelin, A. Applied Bioinformatics for the identification of regulatory elements. Nature Rev. Genet. 5, 276–287 (2004). Reviews the computational methods that underlie the prediction of promoter positions and transcription factor binding sites, targeted towards bench biologists.
Article CAS PubMed Google Scholar
- Bajic, V. B., Tan, S. L., Suzuki, Y. & Sugano, S. Promoter prediction analysis on the whole human genome. Nature Biotechnol. 22, 1467–1473 (2004).
Article CAS Google Scholar
- Brodsky, A. S. et al. Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol. 6, R64 (2005). This study revealed the surprisingly high concentration of RNApolII that is bound to exons but not introns.
Article CAS PubMed PubMed Central Google Scholar
- Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005). The first genome-wide ChIP–chip determination using antibodies that targeted the PIC.
Article CAS PubMed PubMed Central Google Scholar
- Cooper, S. J., Trinklein, N. D., Anton, E. D., Nguyen, L. & Myers, R. M. Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res. 16, 1–10 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Gershenzon, N. I. & Ioshikhes, I. P. Synergy of human Pol II core promoter elements revealed by statistical sequence analysis. Bioinformatics 21, 1295–1300 (2005).
Article CAS PubMed Google Scholar
- Ohler, U. Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction. Nucleic Acids Res. 34, 5943–5950 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Ohler, U., Liao, G. C., Niemann, H. & Rubin, G. M. Computational analysis of core promoters in the Drosophila genome. Genome Biol. 3, RESEARCH0087 (2002).
- Molina, C. & Grotewold, E. Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6, 25 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Schug, J. et al. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 6, R33 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).
Article CAS PubMed Google Scholar
- Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).
Article CAS PubMed Google Scholar
- Crawford, G. E. et al. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nature Methods 3, 503–509 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Fan, J. B., Chee, M. S. & Gunderson, K. L. Highly parallel genomic assays. Nature Rev. Genet. 7, 632–644 (2006).
Article CAS PubMed Google Scholar
- Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002). One of several key publications from Affymetrix on the utility of tiling arrays and the widespread occurrence of non-coding RNA.
Article CAS PubMed Google Scholar
- Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).
Article CAS PubMed Google Scholar
- Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genet. (2006). The largest experimental promoter identification study to date in any species, with subsequent computational analysis.
- Harbers, M. & Carninci, P. Tag-based approaches for transcriptome research and genome annotation. Nature Methods 2, 495–502 (2005).
Article CAS PubMed Google Scholar
- Barrera, L. O. & Ren, B. The transcriptional regulatory code of eukaryotic cells — insights from genome-wide analysis of chromatin organization and transcription factor binding. Curr. Opin. Cell Biol. 18, 291–298 (2006).
Article CAS PubMed Google Scholar
- Kimura, K. et al. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 16, 55–65 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Carninci, P. et al. Targeting a complex transcriptome: the construction of the mouse full-length cDNA encyclopedia. Genome Res. 13, 1273–1289 (2003).
Article PubMed PubMed Central Google Scholar
- Suzuki, Y. et al. Large-scale collection and characterization of promoters of human and mouse genes. In silico Biol. 4, 0036 (2004).
Google Scholar
- Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA 100, 15776–15781 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Kodzius, R. et al. CAGE: cap analysis of gene expression. Nature Methods 3, 211–222 (2006).
Article CAS PubMed Google Scholar
- Hashimoto, S. et al. 5′-end SAGE for the analysis of transcriptional start sites. Nature Biotechnol. 22, 1146–1149 (2004).
Article CAS Google Scholar
- Wei, C. L. et al. 5′ long serial analysis of gene expression (LongSAGE) and 3′ LongSAGE for transcriptome characterization and genome annotation. Proc. Natl Acad. Sci. USA 101, 11701–11706 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature Methods 2, 105–111 (2005).
Article CAS PubMed Google Scholar
- Shannon, M. F. & Rao, S. Transcription. Of chips and ChIPs. Science 296, 666–669 (2002).
Article CAS PubMed Google Scholar
- Ren, B. & Dynlacht, B. D. Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol. 376, 304–315 (2004).
Article CAS PubMed Google Scholar
- Loh, Y. H. et al. The OCT4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).
Article CAS PubMed Google Scholar
- Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).
Article CAS PubMed Google Scholar
- Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14, 331–342 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Schaefer, B. C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal. Biochem. 227, 255–273 (1995).
Article CAS PubMed Google Scholar
- Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002).
Article PubMed Google Scholar
- Yamashita, R. et al. DBTSS: DataBase of Human Transcription Start Sites, progress report 2006. Nucleic Acids Res. 34, D86–D89 (2006).
Article CAS PubMed Google Scholar
- Jackson, D. A., Pombo, A. & Iborra, F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. Faseb J. 14, 242–254 (2000).
Article CAS PubMed Google Scholar
- Kovalskaya, E., Buzdin, A., Gogvadze, E., Vinogradova, T. & Sverdlov, E. Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions. Virology 346, 373–378 (2006).
Article CAS PubMed Google Scholar
- Buzdin, A., Kovalskaya-Alexandrova, E., Gogvadze, E. & Sverdlov, E. GREM, a technique for genome-wide isolation and quantitative analysis of promoter active repeats. Nucleic Acids Res. 34, e67 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Ling, J., Baibakov, B., Pi, W., Emerson, B. M. & Tuan, D. The HS2 enhancer of the β-globin locus control region initiates synthesis of non-coding, polyadenylated RNAs independent of a _cis_-linked globin promoter. J. Mol. Biol. 350, 883–896 (2005).
Article CAS PubMed Google Scholar
- Drewell, R. A. et al. Novel conserved elements upstream of the H19 gene are transcribed and act as mesodermal enhancers. Development 129, 1205–1213 (2002).
CAS PubMed Google Scholar
- Ravasi, T. & Hume, D. A. in Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics (ed. Subramamiam, S.) (John Wiley & Sons, Chichester, 2005).
Google Scholar
- Gingeras, T. R. The multitasking genome. Nature Genet. 38, 608–609 (2006).
Article CAS PubMed Google Scholar
- Suzuki, Y. et al. Diverse transcriptional initiation revealed by fine, large-scale mapping of mRNA start sites. EMBO Rep. 2, 388–393 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Ponjavic, J. et al. Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. Genome Biol. 7, R78 (2006).
Article PubMed PubMed Central Google Scholar
- Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery. Nature Struct. Mol. Biol. 11, 394–403 (2004).
Article CAS Google Scholar
- Zhu, Q., Dabi, T. & Lamb, C. TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell 7, 1681–1689 (1995).
Article CAS PubMed PubMed Central Google Scholar
- O'Shea-Greenfield, A. & Smale, S. T. Roles of TATA and initiator elements in determining the start site location and direction of RNA polymerase II transcription. J. Biol. Chem. 267, 1391–1402 (1992).
CAS PubMed Google Scholar
- Grace, M. L., Chandrasekharan, M. B., Hall, T. C. & Crowe, A. J. Sequence and spacing of TATA box elements are critical for accurate initiation from the β-phaseolin promoter. J. Biol. Chem. 279, 8102–8110 (2004).
Article CAS PubMed Google Scholar
- Smale, S. T. et al. The initiator element: a paradigm for core promoter heterogeneity within metazoan protein-coding genes. Cold Spring Harb. Symp. Quant. Biol. 63, 21–31 (1998).
Article CAS PubMed Google Scholar
- Weis, L. & Reinberg, D. Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator-binding proteins. Mol. Cell. Biol. 17, 2973–2984 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Gallagher, P. G. et al. A dinucleotide deletion in the ankyrin promoter alters gene expression, transcription initiation and TFIID complex formation in hereditary spherocytosis. Hum. Mol. Genet. 14, 2501–2509 (2005).
Article CAS PubMed Google Scholar
- Lee, M. P. et al. ATG deserts define a novel core promoter subclass. Genome Res. 15, 1189–1197 (2005). An in-depth experimental study of promoters with multiple start sites, followed by a computational screening of ATG deserts in the human genome.
Article CAS PubMed PubMed Central Google Scholar
- Carcamo, J., Buckbinder, L. & Reinberg, D. The initiator directs the assembly of a transcription factor IID-dependent transcription complex. Proc. Natl Acad. Sci. USA 88, 8052–8056 (1991).
Article CAS PubMed PubMed Central Google Scholar
- Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
Article CAS PubMed Google Scholar
- Nishida, H. et al. Histone H3 acetylated at lysine 9 in promoter is associated with low nucleosome density in the vicinity of transcription start site in human cell. Chromosome Res. 14, 203–211 (2006).
Article CAS PubMed Google Scholar
- Mellor, J. Dynamic nucleosomes and gene transcription. Trends Genet. 22, 320–329 (2006).
Article CAS PubMed Google Scholar
- Bantignies, F. & Cavalli, G. Cellular memory and dynamic regulation of polycomb group proteins. Curr. Opin. Cell Biol. 18, 275–283 (2006).
Article CAS PubMed Google Scholar
- Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Kawaji, H. et al. Dynamic usage of transcription start sites within core promoters. Genome Biol. 7, R118 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Taylor, M. S. et al. Heterotachy in mammalian promoter evolution. PLoS Genet. 2, e30 (2006). The most comprehensive study of promoter evolution in mammalian species to date.
Article CAS PubMed PubMed Central Google Scholar
- Albig, W., Kioschis, P., Poustka, A., Meergans, K. & Doenecke, D. Human histone gene organization: nonregular arrangement within a large cluster. Genomics 40, 314–322 (1997).
Article CAS PubMed Google Scholar
- Guarguaglini, G. et al. Expression of the murine RanBP1 and Htf9-c genes is regulated from a shared bidirectional promoter during cell cycle progression. Biochem. J. 325, 277–286 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Sugimoto, M., Oohashi, T. & Ninomiya, Y. The genes COL4A5 and COL4A6, coding for basement membrane collagen chains {alpha}5(IV) and {alpha}6(IV), are located head-to-head in close proximity on human chromosome Xq22 and COL4A6 is transcribed from two alternative promoters. Proc. Natl Acad. Sci. USA 91, 11679–11683 (1994).
Article CAS PubMed PubMed Central Google Scholar
- Trinklein, N. D. et al. An abundance of bidirectional promoters in the human genome. Genome Res. 14, 62–66 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Engstrom, P. G. et al. Complex loci in human and mouse genomes. PLoS Genet. 2, e47 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).
Article PubMed Google Scholar
- Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504 (2005).
Article CAS PubMed Google Scholar
- Bai, L., Santangelo, T. J. & Wang, M. D. Single-molecule analysis of RNA polymerase transcription. Annu. Rev. Biophys. Biomol. Struct. 35, 343–360 (2006).
Article CAS PubMed Google Scholar
- Kornblihtt, A. R., de la Mata, M., Fededa, J. P., Munoz, M. J. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004). An excellent review that connects the splicing process to transcription.
Article CAS PubMed PubMed Central Google Scholar
- Dye, M. J., Gromak, N. & Proudfoot, N. J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849–859 (2006).
Article CAS PubMed Google Scholar
- Schwartz, S. et al. Human–mouse alignments with BLASTZ. Genome Res. 13, 103–107 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Keightley, P. D., Lercher, M. J. & Eyre-Walker, A. Evidence for widespread degradation of gene control regions in hominid genomes. PLoS. Biol. 3, e42 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Lee, S., Kohane, I. & Kasif, S. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes. BMC Genomics 6, 168 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Tirosh, I., Weinberger, A., Carmi, M. & Barkai, N. A genetic signature of interspecies variations in gene expression. Nature Genet. 38, 830–834 (2006).
Article CAS PubMed Google Scholar
- Nilsson, R. et al. Transcriptional network dynamics in macrophage activation. Genomics 88, 133–142 (2006).
Article CAS PubMed Google Scholar
- Yan, C. & Boyd, D. D. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression. Mol. Cell. Biol. 26, 6357–6371 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).
Article CAS PubMed Google Scholar
- Wiren, M. et al. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J. 24, 2906–2918 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nature Cell Biol. 8, 764–770 (2006).
Article CAS PubMed Google Scholar
- Furuno, M. et al. Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS Genet. 2, e37 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Wurtele, H. & Chartrand, P. Genome-wide scanning of _HoxB1_-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res. 14, 477–495 (2006).
Article CAS PubMed Google Scholar
- Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nature Genet. 36, 889–893 (2004).
Article CAS PubMed Google Scholar
- Chakalova, L., Debrand, E., Mitchell, J. A., Osborne, C. S. & Fraser, P. Replication and transcription: shaping the landscape of the genome. Nature Rev. Genet 6, 669–677 (2005).
Article CAS PubMed Google Scholar
- Krivan, W. & Wasserman, W. W. A predictive model for regulatory sequences directing liver-specific transcription. Genome Res. 11, 1559–1566 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Lenhard, B. et al. Identification of conserved regulatory elements by comparative genome analysis. J. Biol. 2, 13 (2003).
Article PubMed PubMed Central Google Scholar
- Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Ng, P. et al. Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res. 34, e84 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Sabo, P. J. et al. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nature Methods 3, 511–518 (2006).
Article CAS PubMed Google Scholar
- ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).
- Sambrook, J. & Russel, D. W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001).
Google Scholar
- Kadonaga, J. T. The DPE, a core promoter element for transcription by RNA polymerase II. Exp. Mol. Med. 34, 259–264 (2002).
Article CAS PubMed Google Scholar
- Lagrange, T., Kapanidis, A. N., Tang, H., Reinberg, D. & Ebright, R. H. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev. 12, 34–44 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).
Article CAS PubMed Google Scholar
- Antequera, F. & Bird, A. Number of CpG islands and genes in human and mouse. Proc. Natl Acad. Sci. USA 90, 11995–11999 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Saxonov, S., Berg, P. & Brutlag, D. L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA 103, 1412–1417 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Gustincich, S. et al. The complexity of the mammalian transcriptome. J. Physiol. 575, 321–332 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).
Article CAS PubMed Google Scholar
- Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE. Genome Biol. 7, S41–S49 (2006).
Article Google Scholar