Amiel, J. in Study of the Leukocyte Phenotypes in Hodgkin's Disease in Histocompatibility Testing (ed. Teraski, P. I.) 79–81 (Munksgaard, 1967). Google Scholar
Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Ann. Rev. Genom. Hum. Genet.14, 301–323 (2013). ArticleCAS Google Scholar
Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol.16, 1114–1123 (2015). ArticleCASPubMed Google Scholar
Robinson, J., Soormally, A. R., Hayhurst, J. D. & Marsh, S. G. E. The IPD-IMGT/HLA database — new developments in reporting HLA variation. Hum. Immunol.77, 233–237 (2016). ArticleCASPubMed Google Scholar
Parham, P. & Ohta, T. Population biology of antigen presentation by MHC class I molecules. Science272, 67–74 (1996). ArticleCASPubMed Google Scholar
Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science283, 1748–1752 (1999). ArticleCASPubMed Google Scholar
Parham, P. & Moffett, A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat. Rev. Immunol.13, 133–144 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Sewell, A. K. Why must T cells be cross-reactive? Nat. Rev. Immunol.12, 668–677 (2012). ArticleCAS Google Scholar
Quigley, M. F. et al. Convergent recombination shapes the clonotypic landscape of the naive T-cell repertoire. Proc. Natl Acad. Sci. USA107, 19414–19419 (2010). ArticlePubMedPubMed Central Google Scholar
Saunders, P. M. et al. A bird's eye view of NK cell receptor interactions with their MHC class I ligands. Immunol. Rev.267, 148–166 (2015). ArticleCASPubMed Google Scholar
Hudson, L. E. & Allen, R. L. Leukocyte Ig-Like Receptors — a model for MHC class I disease associations. Front. Immunol.7, 281 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Sim, M. J. et al. Canonical and cross-reactive binding of NK cell inhibitory receptors to HLA-C allotypes is dictated by peptides bound to HLA-C. Front. Immunol.8, 193 (2017). PubMedPubMed Central Google Scholar
Miles, J. J., McCluskey, J., Rossjohn, J. & Gras, S. Understanding the complexity and malleability of T-cell recognition. Immunol. Cell Biol.93, 433–441 (2015). ArticleCASPubMed Google Scholar
Madsen, L. S. et al. A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat. Genet.23, 343–347 (1999). ArticleCASPubMed Google Scholar
Hahn, M., Nicholson, M. J., Pyrdol, J. & Wucherpfennig, K. W. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol.6, 490–496 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Bulek, A. M. et al. Structural basis for the killing of human beta cells by CD8+ T cells in type 1 diabetes. Nat. Immunol.13, 283–289 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet.15, 293–297 (1997). ArticleCASPubMed Google Scholar
Cole, D. K. et al. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J. Clin. Invest.126, 2191–2204 (2016). ArticlePubMedPubMed Central Google Scholar
Yin, Y., Li, Y., Kerzic, M. C., Martin, R. & Mariuzza, R. A. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J.30, 1137–1148 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Quandt, J. A. et al. Unique clinical and pathological features in HLA-DRB1*0401-restricted MBP 111-129-specific humanized TCR transgenic mice. J. Exp. Med.200, 223–234 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Armstrong, K. M., Piepenbrink, K. H. & Baker, B. M. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem. J.415, 183–196 (2008). ArticlePubMedCAS Google Scholar
Stadinski, B. D. et al. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc. Natl Acad. Sci. USA107, 10978–10983 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yang, J. et al. Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc. Natl Acad. Sci. USA111, 14840–14845 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ooi, J. D. et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature545, 243–247 (2017). This study reveals a mechanistic basis for the dominantly protective effect of HLA in autoimmune disease via an effect on self-epitope-specific Tregcells. ArticlePubMedPubMed CentralCAS Google Scholar
Harkiolaki, M. et al. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity30, 348–357 (2009). ArticleCASPubMed Google Scholar
Sethi, D. K. et al. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC. J. Exp. Med.208, 91–102 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Wucherpfennig, K. W. & Strominger, J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell80, 695–705 (1995). ArticleCASPubMedPubMed Central Google Scholar
Belbasis, L., Bellou, V., Evangelou, E., Ioannidis, J. P. A. & Tzoulaki, L. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol.14, 263–273 (2015). ArticlePubMed Google Scholar
Nielsen, T. R. et al. Effects of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult. Scler. J.15, 431–436 (2009). ArticleCAS Google Scholar
Lang, H. L. E. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol.3, 940–943 (2002). ArticleCASPubMed Google Scholar
Babon, J. A. et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat. Med.22, 1482–1487 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Koning, F., Thomas, R., Rossjohn, J. & Toes, R. E. Coeliac disease and rheumatoid arthritis: similar mechanisms, different antigens. Nat. Rev. Rheumatol.11, 450–461 (2015). ArticleCASPubMed Google Scholar
Scally, S. W. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med.210, 2569–2582 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Mohammed, F. et al. Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat. Immunol.9, 1236–1243 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Mannering, S. I. et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J. Exp. Med.202, 1191–1197 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med.4, 713–717 (1998). ArticleCASPubMed Google Scholar
Bodd, M., Kim, C. Y., Lundin, K. E. & Sollid, L. M. T-Cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease. Gastroenterology142, 552–561 (2012). ArticleCASPubMed Google Scholar
Fallang, L. E. et al. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Nat. Immunol.10, 1096–1101 (2009). ArticleCASPubMed Google Scholar
Hovhannisyan, Z. et al. The role of HLA-DQ8 β57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature456, 534–538 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Todd, J. A., Bell, J. I. & McDevitt, H. O. HLA-DQ-β gene contributes to susceptibility and resistance to insulin-dependent diabetes-mellitus. Nature329, 599–604 (1987). ArticleCASPubMed Google Scholar
Corper, A. L. et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science288, 505–511 (2000). ArticleCASPubMed Google Scholar
Broughton, S. E. et al. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity37, 611–621 (2012). ArticleCASPubMed Google Scholar
Petersen, J. et al. T-Cell receptor recognition of HLA-DQ2-gliadin complexes associated with celiac disease. Nat. Struct. Mol. Biol.21, 480–488 (2014). ArticleCASPubMed Google Scholar
Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med.3, 797–801 (1997). ArticleCASPubMed Google Scholar
Verpoort, K. N. et al. Isotype distribution of anti-cyclic citrullinated peptide antibodies in undifferentiated arthritis and rheumatoid arthritis reflects an ongoing immune response. Arthritis Rheum.54, 3799–3808 (2006). ArticleCASPubMed Google Scholar
Liepe, J. et al. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science354, 354–358 (2016). This study demonstrates that the proteasome-generated hybrid peptide pool accounts for as much as one-third of the HLA class I immunopeptidome, with implications for disease mechanisms and antigen-specific therapies. ArticleCASPubMed Google Scholar
Hansen, T. H. & Bouvier, M. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol.9, 503–513 (2009). ArticleCASPubMed Google Scholar
Jin, N. et al. N-Terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proc. Natl Acad. Sci. USA112, 13318–13323 (2015). ArticleCASPubMedPubMed Central Google Scholar
Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science351, 711–714 (2016). This study demonstrates that hybrid insulin peptides can be found in pancreatic islet β-cells in T1D and are antigenic for CD4+ T cells. ArticlePubMedPubMed CentralCAS Google Scholar
Raj, P. et al. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. eLife5, e12089 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
O'Huigin, C. et al. The molecular origin and consequences of escape from miRNA regulation by HLA-C alleles. Am. J. Hum. Genet.89, 424–431 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Shrestha, D., Szollosi, J. & Jenei, A. Bare lymphocyte syndrome: an opportunity to discover our immune system. Immunol. Lett.141, 147–157 (2012). ArticleCASPubMed Google Scholar
Rowe, M. et al. Host shutoff during productive Epstein–Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc. Natl Acad. Sci. USA104, 3366–3371 (2007). ArticleCASPubMedPubMed Central Google Scholar
Balan, N., Osborn, K. & Sinclair, A. J. Repression of CIITA by the Epstein–Barr virus transcription factor Zta is independent of its dimerization and DNA binding. J. Gen. Virol.97, 725–732 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Petersdorf, E. W. et al. HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood124, 3996–4003 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Ferreira, L. M. R., Meissner, T. B., Tilburgs, T. & Strominger, J. L. HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol.38, 272–286 (2017). ArticleCASPubMed Google Scholar
Quach, K., Grover, S. A., Kenigsberg, S. & Librach, C. L. A combination of single nucleotide polymorphisms in the 3′ untranslated region of HLA-G is associated with preeclampsia. Hum. Immunol.75, 1163–1170 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Ljunggren, H. G. et al. Empty MHC class-I molecules come out in the cold. Nature346, 476–480 (1990). ArticleCASPubMed Google Scholar
Wearsch, P. A. & Cresswell, P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat. Immunol.8, 873–881 (2007). ArticleCASPubMed Google Scholar
Williams, A. P., Peh, C. A., Purcell, A. W., McCluskey, J. & Elliott, T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity16, 509–520 (2002). ArticleCASPubMed Google Scholar
Rizvi, S. M. et al. Distinct assembly profiles of HLA-B molecules. J. Immunol.192, 4967–4976 (2014). ArticlePubMedCAS Google Scholar
Thammavongsa, V., Raghuraman, G., Filzen, T. M., Collins, K. L. & Raghavan, M. HLA-B44 polymorphisms at position 116 of the heavy chain influence TAP complex minding via an effect on peptide occupancy. J. Immunol.177, 3150–3161 (2006). ArticleCASPubMed Google Scholar
Zernich, D. et al. Natural HLA class I polymorphism controls the pathway of antigen presentation and susceptibility to viral evasion. J. Exp. Med.200, 13–24 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Apps, R. et al. Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. J. Immunol.194, 3594–3600 (2015). ArticlePubMedCAS Google Scholar
Horowitz, A. et al. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci. Immunol.1, eaag1672 (2016). ArticlePubMedPubMed Central Google Scholar
Duggal, P. et al. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann. Intern. Med.158, 235–245 (2013). ArticlePubMedPubMed Central Google Scholar
Miyadera, H., Ohashi, J., Lernmark, Å., Kitamura, T. & Tokunaga, K. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J. Clin. Invest.125, 275–291 (2015). ArticlePubMed Google Scholar
Zhou, Z. & Jensen, P. E. Structural characteristics of HLA-DQ that may impact DM editing and susceptibility to type-1 diabetes. Front. Immunol.4, 262 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Ferreira, R. C. et al. High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency. PLOS Genet.8, e1002476 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Weinstock, C. et al. Autoimmune polyglandular syndrome type 2 shows the same HLA class II pattern as type 1 diabetes. Tissue Antigens77, 317–324 (2011). ArticleCASPubMed Google Scholar
Hu, X. L. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet.47, 898–905 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Mignot, E. et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet.68, 686–699 (2001). ArticlePubMedPubMed CentralCAS Google Scholar
Cortes, A. et al. Bayesian analysis of genetic association across tree-structured routine healthcare data in the UK Biobank. Nat. Genet.49, 1311–1318 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
McGonagle, D., Aydin, S. Z., Gul, A., Mahr, A. & Direskeneli, H. 'MHC-I-opathy'-unified concept for spondyloarthritis and Behcet disease. Nat. Rev. Rheumatol.11, 731–740 (2015). ArticleCASPubMed Google Scholar
Brown, M. A., Kenna, T. & Wordsworth, B. P. Genetics of ankylosing spondylitis — insights into pathogenesis. Nat. Rev. Rheumatol.12, 81–91 (2016). ArticleCASPubMed Google Scholar
Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet.47, 1085–1090 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Vader, W. et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc. Natl Acad. Sci. USA100, 12390–12395 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gregersen, J. W. et al. Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature443, 574–577 (2006). ArticleCASPubMed Google Scholar
Sulzer, D. et al. T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature546, 656–661 (2017). This study demonstrates that the HLA associations with Parkinson disease may be related to the presence ofα-synuclein-specific T cells, suggesting a relevance of the immune system in this neurodegenerative condition. ArticlePubMedPubMed CentralCAS Google Scholar
Tan, A. T. et al. Host ethnicity and virus genotype shape the hepatitis B virus-specific T-cell repertoire. J. Virol.82, 10986–10997 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Ansari, M. A. et al. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat. Genet,49, 666–673 (2017). ArticleCAS Google Scholar
Swadling, L. et al. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci. Transl. Med.6, 261ra153 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Park, S. H. et al. Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nat. Med.19, 1638–1642 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat. Biotechnol.33, 1152–1158 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Vanderlugt, C. L. & Miller, S. D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol.2, 85–95 (2002). ArticleCASPubMed Google Scholar
Vader, W. et al. The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology122, 1729–1737 (2002). ArticleCASPubMed Google Scholar
Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science274, 94–96 (1996). ArticleCASPubMed Google Scholar
Dolton, G. et al. Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells. Clin. Exp. Immunol.177, 47–63 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Newell, E. W. et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol.31, 623–629 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature547, 94–98 (2017). This study describes the development of an algorithm for analysing large numbers of TCR sequences and defining TCR specificity groups across TCRs and individuals, which may facilitate analyses of T cell responses and ligand identification. ArticlePubMedPubMed CentralCAS Google Scholar
Borbulevych, O. Y., Santhanagopolan, S. M., Hossain, M. & Baker, B. M. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J. Immunol.187, 2453–2463 (2011). ArticlePubMedCAS Google Scholar
Hansen, S. G. et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science340, 1237874 (2013). ArticleCASPubMed Google Scholar
Beringer, D. X. et al. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex. Nat. Immunol.16, 1153–1161 (2015). ArticleCASPubMed Google Scholar
Gras, S. et al. Reversed T cell receptor docking on a major histocompatibility class I complex limits involvement in the immune response. Immunity45, 749–760 (2016). ArticleCASPubMed Google Scholar
RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet386, 31–45 (2015).
Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet386, 857–866 (2015). ArticleCASPubMed Google Scholar
Hadinegoro, S. R. et al. Efficacy and long-term safety of a Dengue vaccine in regions of endemic disease. N. Engl. J. Med.373, 1195–1206 (2015). ArticleCASPubMed Google Scholar
Ovsyannikova, I. G., Dhiman, N., Jacobson, R. M. & Poland, G. A. Human leukocyte antigen polymorphisms: variable humoral immune responses to viral vaccines. Expert Rev. Vaccines5, 33–43 (2006). ArticleCASPubMed Google Scholar
Bomfim, I. L. et al. The immunogenetics of narcolepsy associated with A(H1N1)pdm09 vaccination (Pandemrix) supports a potent gene-environment interaction. Genes Immun.18, 75–81 (2017). ArticleCASPubMed Google Scholar
Tavira, B. et al. Effect of simultaneous vaccination with H1N1 and GAD-alum on GAD65-induced immune response. Diabetologia60, 1276–1283 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Larche, M. & Wraith, D. C. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat. Med.11, S69–S76 (2005). ArticleCASPubMed Google Scholar
Alhadj Ali, M. et al. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Sci. Transl. Med.9, eaaf7779 (2017). ArticleCASPubMed Google Scholar
Afridi, S., Hoessli, D. C. & Hameed, M. W. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications. Immunol. Rev.272, 151–168 (2016). ArticleCASPubMed Google Scholar
Ludvigsson, J., Wahlberg, J. & Casas, R. Intralymphatic injection of autoantigen in type 1 diabetes. N. Engl. J. Med.376, 697–699 (2017). ArticlePubMed Google Scholar
Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature530, 434–440 (2016). This study demonstrates that systemic delivery of nanoparticles coated with autoimmune-disease-relevant peptides bound to MHC class II molecules can trigger the generation and expansion of antigen-specific regulatory CD4+ T cells, with potential therapeutic implications. ArticleCASPubMed Google Scholar
Chandran, S. et al. Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants. Am. J. Transplant.17, 2945–2954 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Verdegaal, E. M. E. et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature536, 91–95 (2016). ArticleCASPubMed Google Scholar
Stronen, E. et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science352, 1337–1341 (2016). This study demonstrates that a higher frequency of tumour mutations is more immunogenic than initially estimated and that healthy donors can be a valuable source of T cells that are reactive to these tumour neoantigens, thereby indicating a new, personalized approach for cancer immunotherapy. ArticleCASPubMed Google Scholar
de Bakker, P. I. W. et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet.38, 1166–1172 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Dilthey, A., Cox, C., Iqbal, Z., Nelson, M. R. & McVean, G. Improved genome inference in the MHC using a population reference graph. Nat. Genet.47, 682–688 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet.44, 291–296 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Zhou, F. S. et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat. Genet.48, 740–746 (2016). ArticleCASPubMed Google Scholar
Dolton, G. et al. More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology146, 11–22 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Sabatino, J. J. Jr, Huang, J., Zhu, C. & Evavold, B. D. High prevalence of low affinity peptide-MHC II tetramer-negative effectors during polyclonal CD4+ T cell responses. J. Exp. Med.208, 81–90 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Wekerle, H., Flugel, A., Fugger, L., Schett, G. & Serreze, D. Autoimmunity's next top models. Nat. Med.18, 66–70 (2012). ArticleCASPubMed Google Scholar
Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature450, 299–303 (2007). ArticleCASPubMed Google Scholar