Dendritic-cell interactions with HIV: infection and viral dissemination (original) (raw)
United Nations Programme on HIV/AIDS. 2006 Report on the Global AIDS epidemic 8 (UNAIDS, Geneva, 2006).
Shattock, R. J. & Moore, J. P. Inhibiting sexual transmission of HIV-1 infection. Nature. Rev. Microbiol.1, 25–34 (2003). ArticleCAS Google Scholar
Pope, M. & Haase, A. T. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nature Med.9, 847–852 (2003). ArticleCASPubMed Google Scholar
Steinman, R. M. et al. The interaction of immunodeficiency viruses with dendritic cells. Curr. Top. Microbiol. Immunol.276, 1–30 (2003). CASPubMed Google Scholar
Haase, A. T. Perils at mucosal front lines for HIV and SIV and their hosts. Nature Rev. Immunol.5, 783–792 (2005). ArticleCAS Google Scholar
Cameron, P. U. et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science257, 383–387 (1992). ArticleCASPubMed Google Scholar
Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell78, 389–398 (1994). ArticleCASPubMed Google Scholar
McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell–T cell junctions. Science300, 1295–1297 (2003). First paper to describe infectious synapses between DCs and T cells. ArticleCASPubMed Google Scholar
Arrighi, J. F. et al. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J. Exp. Med.200, 1279–1288 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wiley, R. D. & Gummuluru, S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc. Natl Acad. Sci. USA103, 738–743 (2006). Recent paper that describes HIVtrans-infection mediated by exosome release from immature MDDCs. ArticleCASPubMedPubMed Central Google Scholar
Kawamura, T. et al. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc. Natl Acad. Sci. USA100, 8401–8406 (2003). ArticleCASPubMedPubMed Central Google Scholar
Turville, S. G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood103, 2170–2179 (2004). Reports the rapid transmission and long-term transmission of HIV by human MDDCs. ArticleCASPubMed Google Scholar
Nobile, C. et al. Covert human immunodeficiency virus replication in dendritic cells and in DC-SIGN-expressing cells promotes long-term transmission to lymphocytes. J. Virol.79, 5386–5399 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lore, K., Smed-Sorensen, A., Vasudevan, J., Mascola, J. R. & Koup, R. A. Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J. Exp. Med.201, 2023–2033 (2005). ArticleCASPubMedPubMed Central Google Scholar
Burleigh, L. et al. Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J. Virol.80, 2949–2957 (2006). ArticleCASPubMedPubMed Central Google Scholar
Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000). ArticleCASPubMed Google Scholar
Liu, Y. J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell106, 259–262 (2001). ArticleCASPubMed Google Scholar
Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science283, 1183–1186 (1999). ArticleCASPubMed Google Scholar
Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med.5, 919–923 (1999). ArticleCASPubMed Google Scholar
Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science284, 1835–1837 (1999). ArticleCASPubMed Google Scholar
Zaitseva, M. et al. Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nature Med.3, 1369–1375 (1997). ArticleCASPubMed Google Scholar
Valladeau, J. et al. The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur. J. Immunol.29, 2695–2704 (1999). ArticleCASPubMed Google Scholar
Niedecken, H., Lutz, G., Bauer, R. & Kreysel, H. W. Langerhans cell as primary target and vehicle for transmission of HIV. Lancet2, 519–520 (1987). ArticleCASPubMed Google Scholar
Berger, R. et al. Isolation of human immunodeficiency virus type 1 from human epidermis: virus replication and transmission studies. J. Invest. Dermatol.99, 271–277 (1992). ArticleCASPubMed Google Scholar
Soto-Ramirez, L. E. et al. HIV-1 Langerhans' cell tropism associated with heterosexual transmission of HIV. Science271, 1291–1293 (1996). ArticleCASPubMed Google Scholar
Ludewig, B., Gelderblom, H. R., Becker, Y., Schafer, A. & Pauli, G. Transmission of HIV-1 from productively infected mature Langerhans cells to primary CD4+ T lymphocytes results in altered T cell responses with enhanced production of IFN-γ and IL-10. Virology215, 51–60 (1996). ArticleCASPubMed Google Scholar
Blauvelt, A. et al. Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J. Clin. Invest.100, 2043–2053 (1997). ArticleCASPubMedPubMed Central Google Scholar
Granelli-Piperno, A., Delgado, E., Finkel, V., Paxton, W. & Steinman, R. M. Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J. Virol.72, 2733–2737 (1998). CASPubMedPubMed Central Google Scholar
Granelli-Piperno, A., Finkel, V., Delgado, E. & Steinman, R. M. Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells. Curr. Biol.9, 21–29 (1999). ArticleCASPubMed Google Scholar
Kawamura, T. et al. Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J. Exp. Med.192, 1491–1500 (2000). ArticleCASPubMedPubMed Central Google Scholar
Patterson, S., Rae, A., Hockey, N., Gilmour, J. & Gotch, F. Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J. Virol.75, 6710–6713 (2001). ArticleCASPubMedPubMed Central Google Scholar
Donaghy, H. et al. Loss of blood CD11c+ myeloid and CD11c− plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood98, 2574–2576 (2001). ArticleCASPubMed Google Scholar
Smed-Sorensen, A. et al. Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J. Virol.79, 8861–8869 (2005). ArticleCASPubMedPubMed Central Google Scholar
Granelli-Piperno, A. et al. Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J. Exp. Med.184, 2433–2438 (1996). ArticleCASPubMedPubMed Central Google Scholar
Rubbert, A. et al. Dendritic cells express multiple chemokine receptors used as coreceptors for HIV entry. J. Immunol.160, 3933–3941 (1998). CASPubMed Google Scholar
Turville, S. G. et al. HIV gp120 receptors on human dendritic cells. Blood98, 2482–2488 (2001). ArticleCASPubMed Google Scholar
Ignatius, R. et al. The immunodeficiency virus coreceptor, Bonzo/STRL33/TYMSTR, is expressed by macaque and human skin- and blood-derived dendritic cells. AIDS Res. Hum. Retroviruses16, 1055–1059 (2000). ArticleCASPubMed Google Scholar
Beaulieu, S. et al. Expression of a functional eotaxin (CC chemokine ligand 11) receptor CCR3 by human dendritic cells. J. Immunol.169, 2925–2936 (2002). ArticleCASPubMed Google Scholar
Cameron, P. U., Forsum, U., Teppler, H., Granelli-Piperno, A. & Steinman, R. M. During HIV-1 infection most blood dendritic cells are not productively infected and can induce allogeneic CD4+ T cells clonal expansion. Clin. Exp. Immunol.88, 226–236 (1992). ArticleCASPubMedPubMed Central Google Scholar
Pope, M., Gezelter, S., Gallo, N., Hoffman, L. & Steinman, R. M. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J. Exp. Med.182, 2045–2056 (1995). ArticleCASPubMed Google Scholar
McIlroy, D. et al. Infection frequency of dendritic cells and CD4+ T lymphocytes in spleens of human immunodeficiency virus-positive patients. J. Virol.69, 4737–4745 (1995). CASPubMedPubMed Central Google Scholar
Moris, A. et al. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood103, 2648–2654 (2004). ArticleCASPubMed Google Scholar
Chiu, Y. L. et al. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature435, 108–114 (2005). ArticleCASPubMed Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCASPubMed Google Scholar
Tenner-Racz, K. et al. Immunohistochemical, electron microscopic and in situ hybridization evidence for the involvement of lymphatics in the spread of HIV-1. AIDS2, 299–309 (1988). ArticleCASPubMed Google Scholar
Heath, S. L., Tew, J. G., Szakal, A. K. & Burton, G. F. Follicular dendritic cells and human immunodeficiency virus infectivity. Nature377, 740–744 (1995). ArticleCASPubMed Google Scholar
Burton, G. F., Keele, B. F., Estes, J. D., Thacker, T. C. & Gartner, S. Follicular dendritic cell contributions to HIV pathogenesis. Semin. Immunol.14, 275–284 (2002). ArticleCASPubMed Google Scholar
Schacker, T. et al. Rapid accumulation of human immunodeficiency virus (HIV) in lymphatic tissue reservoirs during acute and early HIV infection: implications for timing of antiretroviral therapy. J. Infect. Dis.181, 354–357 (2000). ArticleCASPubMed Google Scholar
Spiegel, H., Herbst, H., Niedobitek, G., Foss, H. D. & Stein, H. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am. J. Pathol.140, 15–22 (1992). CASPubMedPubMed Central Google Scholar
Smith, B. A. et al. Persistence of infectious HIV on follicular dendritic cells. J. Immunol.166, 690–696 (2001). ArticleCASPubMed Google Scholar
Popov, S., Chenine, A. L., Gruber, A., Li, P. L. & Ruprecht, R. M. Long-term productive human immunodeficiency virus infection of CD1a-sorted myeloid dendritic cells. J. Virol.79, 602–608 (2005). ArticleCASPubMedPubMed Central Google Scholar
Romani, N. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med.180, 83–93 (1994). ArticleCASPubMed Google Scholar
Geijtenbeek, T. B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell100, 575–585 (2000). First paper to identify DC-SIGN. ArticleCASPubMed Google Scholar
de Jong, E. C. et al. Microbial compounds selectively induce TH1 cell-promoting or TH2 cell-promoting dendritic cells in vitro with diverse TH cell-polarizing signals. J. Immunol.168, 1704–1709 (2002). ArticleCASPubMed Google Scholar
Sanders, R. W. et al. Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J. Virol.76, 7812–7821 (2002). ArticleCASPubMedPubMed Central Google Scholar
Turville, S. G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nature Immunol.3, 975–983 (2002). Characterizes a variety of HIV-binding receptors expressed by DC subsets. ArticleCAS Google Scholar
Jefford, M. et al. Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood102, 1753–1763 (2003). ArticleCASPubMed Google Scholar
Granelli-Piperno, A. et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J. Immunol.175, 4265–4273 (2005). Reports that DC-SIGN is not required for DCs to transmit HIV and stimulate T cells. ArticleCASPubMed Google Scholar
Macatonia, S. E., Lau, R., Patterson, S., Pinching, A. J. & Knight, S. C. Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology71, 38–45 (1990). CASPubMedPubMed Central Google Scholar
Knight, S. C., Patterson, S. & Macatonia, S. E. Stimulatory and suppressive effects of infection of dendritic cells with HIV-1. Immunol. Lett.30, 213–218 (1991). ArticleCASPubMed Google Scholar
Lore, K. et al. Accumulation of DC-SIGN+CD40+ dendritic cells with reduced CD80 and CD86 expression in lymphoid tissue during acute HIV-1 infection. AIDS16, 683–692 (2002). ArticlePubMed Google Scholar
Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F. P. & Steinman, R. M. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc. Natl Acad. Sci. USA101, 7669–7674 (2004). ArticleCASPubMedPubMed Central Google Scholar
Granelli-Piperno, A., Shimeliovich, I., Pack, M., Trumpfheller, C. & Steinman, R. M. HIV-1 selectively infects a subset of nonmaturing BDCA1-positive dendritic cells in human blood. J. Immunol.176, 991–998 (2006). ArticleCASPubMed Google Scholar
Fidler, S. J. et al. An early antigen-presenting cell defect in HIV-1-infected patients correlates with CD4 dependency in human T-cell clones. Immunology89, 46–53 (1996). ArticleCASPubMedPubMed Central Google Scholar
Sapp, M. et al. Dendritic cells generated from blood monocytes of HIV-1 patients are not infected and act as competent antigen presenting cells eliciting potent T-cell responses. Immunol. Lett.66, 121–128 (1999). ArticleCASPubMed Google Scholar
Messmer, D. et al. Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells. J. Immunol.169, 4172–4182 (2002). ArticleCASPubMed Google Scholar
Izmailova, E. et al. HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nature Med.9, 191–197 (2003). ArticleCASPubMed Google Scholar
Fanales-Belasio, E. et al. Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J. Immunol.168, 197–206 (2002). ArticleCASPubMed Google Scholar
Quaranta, M. G., Tritarelli, E., Giordani, L. & Viora, M. HIV-1 Nef induces dendritic cell differentiation: a possible mechanism of uninfected CD4+ T cell activation. Exp. Cell Res.275, 243–254 (2002). ArticleCASPubMed Google Scholar
Andrieu, M. et al. Downregulation of major histocompatibility class I on human dendritic cells by HIV Nef impairs antigen presentation to HIV-specific CD8+ T lymphocytes. AIDS Res. Hum. Retroviruses17, 1365–1370 (2001). ArticleCASPubMed Google Scholar
Shinya, E. et al. Endogenously expressed HIV-1 nef down-regulates antigen-presenting molecules, not only class I MHC but also CD1a, in immature dendritic cells. Virology326, 79–89 (2004). ArticleCASPubMed Google Scholar
Spira, A. I. et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J. Exp. Med.183, 215–225 (1996). ArticleCASPubMed Google Scholar
Hu, J., Miller, C. J., O'Doherty, U., Marx, P. A. & Pope, M. The dendritic cell–T cell milieu of the lymphoid tissue of the tonsil provides a locale in which SIV can reside and propagate at chronic stages of infection. AIDS Res. Hum. Retroviruses15, 1305–1314 (1999). ArticleCASPubMed Google Scholar
Hu, J., Gardner, M. B. & Miller, C. J. Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J. Virol.74, 6087–6095 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hu, Q. et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J. Exp. Med.199, 1065–1075 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lederman, M. M., Offord, R. E. & Hartley, O. Microbicides and other topical strategies to prevent vaginal transmission of HIV. Nature Rev. Immunol.6, 371–382 (2006). ArticleCAS Google Scholar
Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances _trans_-infection of T cells. Cell100, 587–597 (2000). Characterizes the role of DC-SIGN in increasing HIVtrans-infection. ArticleCASPubMed Google Scholar
Lin, G. et al. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J. Virol.77, 1337–1346 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pohlmann, S. et al. DC-SIGN interactions with human immunodeficiency virus: virus binding and transfer are dissociable functions. J. Virol.75, 10523–10526 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wu, L., Martin, T. D., Han, Y. C., Breun, S. K. & KewalRamani, V. N. _Trans_-dominant cellular inhibition of DC-SIGN-mediated HIV-1 transmission. Retrovirology1, 14 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lee, B. et al. Cis expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor. J. Virol.75, 12028–12038 (2001). ArticleCASPubMedPubMed Central Google Scholar
Trumpfheller, C., Park, C. G., Finke, J., Steinman, R. M. & Granelli-Piperno, A. Cell type-dependent retention and transmission of HIV-1 by DC-SIGN. Int. Immunol.15, 289–298 (2003). ArticleCASPubMed Google Scholar
Nobile, C., Moris, A., Porrot, F., Sol-Foulon, N. & Schwartz, O. Inhibition of human immunodeficiency virus type 1 Env-mediated fusion by DC-SIGN. J. Virol.77, 5313–5323 (2003). ArticleCASPubMedPubMed Central Google Scholar
Engering, A., Van Vliet, S. J., Geijtenbeek, T. B. & Van Kooyk, Y. Subset of DC-SIGN+ dendritic cells in human blood transmits HIV-1 to T lymphocytes. Blood100, 1780–1786 (2002). ArticleCASPubMed Google Scholar
Gurney, K. B. et al. Binding and transfer of human immunodeficiency virus by DC-SIGN+ cells in human rectal mucosa. J. Virol.79, 5762–5773 (2005). Shows efficient HIV transmission by DC-SIGN+ immature DCs in human rectal mucosa. ArticleCASPubMedPubMed Central Google Scholar
Wu, L. et al. Rhesus macaque dendritic cells efficiently transmit primate lentiviruses independently of DC-SIGN. Proc. Natl Acad. Sci. USA99, 1568–1573 (2002). Shows DC-SIGN-independent transmission of primate lentiviruses by rhesus macaque DCs. ArticleCASPubMedPubMed Central Google Scholar
Wu, L., Martin, T. D., Vazeux, R., Unutmaz, D. & KewalRamani, V. N. Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN interactions with ICAM-3 do not promote human immunodeficiency virus type 1 transmission. J. Virol.76, 5905–5914 (2002). ArticleCASPubMedPubMed Central Google Scholar
Baribaud, F., Pohlmann, S., Leslie, G., Mortari, F. & Doms, R. W. Quantitative expression and virus transmission analysis of DC-SIGN on monocyte-derived dendritic cells. J. Virol.76, 9135–9142 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gummuluru, S., Rogel, M., Stamatatos, L. & Emerman, M. Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J. Virol.77, 12865–12874 (2003). ArticleCASPubMedPubMed Central Google Scholar
Soilleux, E. J. et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol.71, 445–457 (2002). CASPubMed Google Scholar
Krutzik, S. R. et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nature Med.11, 653–660 (2005). ArticleCASPubMed Google Scholar
Chehimi, J. et al. HIV-1 transmission and cytokine-induced expression of DC-SIGN in human monocyte-derived macrophages. J. Leukoc. Biol.74, 757–763 (2003). ArticleCASPubMed Google Scholar
Nguyen, D. G. & Hildreth, J. E. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur. J. Immunol.33, 483–493 (2003). ArticleCASPubMed Google Scholar
Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A. & Littman, D. R. DC-SIGN-mediated internalization of HIV is required for _trans_-enhancement of T cell infection. Immunity16, 135–144 (2002). Reports that HIV internalization is important for efficient DC-SIGN-mediated transmission of HIV. ArticleCASPubMed Google Scholar
Wu, L., Martin, T. D., Carrington, M. & KewalRamani, V. N. Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology318, 17–23 (2004). Shows that DC-SIGN-mediated transmission of HIV is cell-type dependent and indicates that B cells and DCs that facilitate viral transmission have common features. ArticleCASPubMed Google Scholar
Soilleux, E. J. et al. Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J. Pathol.195, 586–592 (2001). ArticleCASPubMed Google Scholar
Jameson, B. et al. Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J. Virol.76, 1866–1875 (2002). ArticleCASPubMedPubMed Central Google Scholar
Engering, A. et al. Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am. J. Pathol.164, 1587–1595 (2004). ArticleCASPubMedPubMed Central Google Scholar
Soilleux, E. J. & Coleman, N. Langerhans cells and the cells of Langerhans cell histiocytosis do not express DC-SIGN. Blood98, 1987–1988 (2001). ArticleCASPubMed Google Scholar
Weissman, D., Li, Y., Orenstein, J. M. & Fauci, A. S. Both a precursor and a mature population of dendritic cells can bind HIV. However, only the mature population that expresses CD80 can pass infection to unstimulated CD4+ T cells. J. Immunol.155, 4111–4117 (1995). CASPubMed Google Scholar
Frank, I. et al. Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J. Virol.76, 2936–2951 (2002). ArticleCASPubMedPubMed Central Google Scholar
Canque, B. et al. The susceptibility to X4 and R5 human immunodeficiency virus-1 strains of dendritic cells derived in vitro from CD34+ hematopoietic progenitor cells is primarily determined by their maturation stage. Blood93, 3866–3875 (1999). CASPubMed Google Scholar
Bakri, Y. et al. The maturation of dendritic cells results in postintegration inhibition of HIV-1 replication. J. Immunol.166, 3780–3788 (2001). ArticleCASPubMed Google Scholar
Tsunetsugu-Yokota, Y. et al. Efficient virus transmission from dendritic cells to CD4+ T cells in response to antigen depends on close contact through adhesion molecules. Virology239, 259–268 (1997). ArticleCASPubMed Google Scholar
Garcia, E. et al. HIV-1 trafficking to the dendritic cell–T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic6, 488–501 (2005). ArticleCASPubMed Google Scholar
Arrighi, J. F. et al. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J. Virol.78, 10848–10855 (2004). ArticleCASPubMedPubMed Central Google Scholar
Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol.2, 569–579 (2002). ArticleCAS Google Scholar
Pelchen-Matthews, A., Kramer, B. & Marsh, M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol.162, 443–455 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, D. G., Booth, A., Gould, S. J. & Hildreth, J. E. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J. Biol. Chem.278, 52347–52354 (2003). ArticleCASPubMed Google Scholar
Sharova, N., Swingler, C., Sharkey, M. & Stevenson, M. Macrophages archive HIV-1 virions for dissemination in trans. EMBO J.24, 2481–2489 (2005). ArticleCASPubMedPubMed Central Google Scholar
Petit, C. et al. Nef is required for efficient HIV-1 replication in cocultures of dendritic cells and lymphocytes. Virology286, 225–236 (2001). ArticleCASPubMed Google Scholar
Moris, A. et al. Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T cell activation, viral transfer. Blood108, 1643–1651 (2006). ArticleCASPubMed Google Scholar
Brenchley, J. M. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med.200, 749–759 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mehandru, S. et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med.200, 761–770 (2004). ArticleCASPubMedPubMed Central Google Scholar
Raposo, G. et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic3, 718–729 (2002). ArticleCASPubMed Google Scholar
Lu, W., Arraes, L. C., Ferreira, W. T. & Andrieu, J. M. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nature Med.10, 1359–1365 (2004). First paper to report a potential therapeutic, DC-based vaccine against chronic HIV infection. ArticleCASPubMed Google Scholar
Kundu, S. K. et al. A pilot clinical trial of HIV antigen-pulsed allogeneic and autologous dendritic cell therapy in HIV-infected patients. AIDS Res. Hum. Retroviruses14, 551–560 (1998). ArticleCASPubMed Google Scholar
Curtis, B. M., Scharnowske, S. & Watson, A. J. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc. Natl Acad. Sci. USA89, 8356–8360 (1992). ArticleCASPubMedPubMed Central Google Scholar
Rappocciolo, G. et al. DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes. PLoS Pathog.2, e70 (2006). Recent report that the induction of DC-SIGN expression on activated primary B cells potentiates HIV transmission to T cells. ArticlePubMedPubMed Central Google Scholar
Tailleux, L. et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med.197, 121–127 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mitchell, D. A., Fadden, A. J. & Drickamer, K. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J. Biol. Chem.276, 28939–28945 (2001). ArticleCASPubMed Google Scholar
Feinberg, H., Mitchell, D. A., Drickamer, K. & Weis, W. I. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science294, 2163–2166 (2001). ArticleCASPubMed Google Scholar
Feinberg, H., Guo, Y., Mitchell, D. A., Drickamer, K. & Weis, W. I. Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J. Biol. Chem.280, 1327–1335 (2005). ArticleCASPubMed Google Scholar
Sol-Foulon, N. et al. HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity16, 145–155 (2002). ArticleCASPubMed Google Scholar
Pohlmann, S., Baribaud, F. & Doms, R. W. DC-SIGN and DC-SIGNR: helping hands for HIV. Trends Immunol.22, 643–646 (2001). ArticleCASPubMed Google Scholar
Ganesh, L. et al. Infection of specific dendritic cells by CCR5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J. Virol.78, 11980–11987 (2004). ArticleCASPubMedPubMed Central Google Scholar