Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol.2, 675–680 (2001). ArticleCAS Google Scholar
Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol.12, 21–27 (2011). ArticleCAS Google Scholar
Oldham, R. K. & Herberman, R. B. Evaluation of cell-mediated cytotoxic reactivity against tumor associated antigens with 125I-iododeoxyuridine labeled target cells. J. Immunol.111, 862–871 (1973). CASPubMed Google Scholar
Herberman, R. B., Nunn, M. E. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer16, 216–229 (1975). ArticleCASPubMed Google Scholar
Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol.5, 112–117 (1975). ArticleCASPubMed Google Scholar
Smyth, M. J., Hayakawa, Y., Takeda, K. & Yagita, H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Rev. Cancer2, 850–861 (2002). ArticleCAS Google Scholar
Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol.29, 235–271 (2011). ArticleCASPubMed Google Scholar
Orange, J. S. & Ballas, Z. K. Natural killer cells in human health and disease. Clin. Immunol.118, 1–10 (2006). ArticleCASPubMed Google Scholar
Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet356, 1795–1799 (2000). One of the very few epidemiological studies to suggest a role for NK cells in the control of tumours in humans. ArticleCASPubMed Google Scholar
Carrega, P. et al. Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56brightCD16− cells and display an impaired capability to kill tumor cells. Cancer112, 863–875 (2008). ArticlePubMed Google Scholar
Platonova, S. et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res.71, 5412–5422 (2011). ArticleCASPubMed Google Scholar
Eckl, J. et al. Transcript signature predicts tissue NK cell content and defines renal cell carcinoma subgroups independent of TNM staging. J. Mol. Med.90, 55–66 (2011). ArticleCASPubMed Google Scholar
Halama, N. et al. Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin. Cancer Res.17, 678–689 (2011). ArticleCASPubMed Google Scholar
Menard, C. et al. Natural killer cell IFN-γ levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res.69, 3563–3569 (2009). ArticleCASPubMed Google Scholar
Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol.2, 557–568 (2002). ArticleCAS Google Scholar
Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med.189, 1907–1921 (1999). ArticleCASPubMedPubMed Central Google Scholar
Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science296, 553–555 (2002). ArticleCASPubMed Google Scholar
Gapin, L., Matsuda, J. L., Surh, C. D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nature Immunol.2, 971–978 (2001). ArticleCAS Google Scholar
Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity22, 705–716 (2005). ArticleCASPubMed Google Scholar
Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4−8− T cells in mice and humans. J. Exp. Med.180, 1097–1106 (1994). ArticleCASPubMed Google Scholar
Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4−8− α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med.178, 1–16 (1993). ArticleCASPubMed Google Scholar
Schumann, J., Voyle, R. B., Wei, B. Y. & MacDonald, H. R. Cutting edge: influence of the TCR Vβ domain on the avidity of CD1d:α-galactosylceramide binding by invariant Vα14 NKT cells. J. Immunol.170, 5815–5819 (2003). ArticlePubMed Google Scholar
Wei, D. G., Curran, S. A., Savage, P. B., Teyton, L. & Bendelac, A. Mechanisms imposing the Vβ bias of Vα14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med.203, 1197–1207 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science306, 1786–1789 (2004). CASPubMed Google Scholar
Pei, B. et al. Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J. Immunol.186, 1348–1360 (2011). This study suggests that the self antigens recognized by NKT cells may not be exclusively glycosphingolipids. ArticleCASPubMed Google Scholar
Venkataswamy, M. M. & Porcelli, S. A. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin. Immunol.22, 68–78 (2010). ArticleCASPubMed Google Scholar
Brigl, M. & Brenner, M. B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol.22, 817–890 (2004). ArticleCASPubMed Google Scholar
Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol.23, 877–900 (2004). ArticleCAS Google Scholar
Godfrey, D. I., Pellicci, D. G. & Smyth, M. J. Immunology: the elusive NKT cell antigen — is the search over? Science306, 1687–1689 (2004). ArticleCASPubMed Google Scholar
Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol.25, 297–336 (2006). ArticleCAS Google Scholar
Nowak, M. et al. Defective NKT cell activation by CD1d+ TRAMP prostate tumor cells is corrected by interleukin-12 with α-galactosylceramide. PLoS ONE5, e11311 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bellone, M. et al. iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS ONE5, e8646 (2010). References 34–37 suggest a tumour immunosurveillance role for NKT cells. ArticleCASPubMedPubMed Central Google Scholar
Kovalovsky, D. et al. The BTB–zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nature Immunol.9, 1055–1064 (2008). ArticleCAS Google Scholar
Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nature Immunol.10, 1118–1124 (2009). ArticleCAS Google Scholar
Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med.206, 2977–2986 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wesley, J. D., Tessmer, M. S., Chaukos, D. & Brossay, L. NK cell-like behavior of Vα14i NK T cells during MCMV infection. PLoS Pathog.4, e1000106 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tyznik, A. J. et al. Cutting edge: the mechanism of invariant NKT cell responses to viral danger signals. J. Immunol.181, 4452–4456 (2008). ArticleCASPubMed Google Scholar
Brigl, M. et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med.208, 1163–1177 (2011). References 43–45 suggest that NKT cells can behave as innate immune cells. ArticleCASPubMedPubMed Central Google Scholar
Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med.198, 1069–1076 (2003). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, J. L. et al. Homeostasis of Vα14i NKT cells. Nature Immunol.3, 966–974 (2002). ArticleCAS Google Scholar
Ranson, T. et al. IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc. Natl Acad. Sci. USA100, 2663–2668 (2003). ArticleCASPubMedPubMed Central Google Scholar
Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity20, 477–494 (2004). ArticleCASPubMed Google Scholar
Wingender, G., Krebs, P., Beutler, B. & Kronenberg, M. Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J. Immunol.185, 2721–2729 (2010). ArticleCASPubMed Google Scholar
Carlyle, J. R. et al. Evolution of the Ly49 and Nkrp1 recognition systems. Semin. Immunol.20, 321–330 (2008). ArticleCASPubMed Google Scholar
Parham, P. MHC class I molecules and KIRs in human history, health and survival. Nature Rev. Immunol.5, 201–214 (2005). ArticleCAS Google Scholar
Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature436, 709–713 (2005). ArticleCASPubMed Google Scholar
Fernandez, N. C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood105, 4416–4423 (2005). ArticleCASPubMedPubMed Central Google Scholar
Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity25, 331–342 (2006). References 53–55 indicate that MHC class I recognition by NK cell inhibitory receptors contributes to the acquisition of NK cell functions. ArticleCASPubMed Google Scholar
Yokoyama, W. M. & Kim, S. How do natural killer cells find self to achieve tolerance? Immunity24, 249–257 (2006). ArticleCASPubMed Google Scholar
Raulet, D. H. & Vance, R. E. Self-tolerance of natural killer cells. Nature Rev. Immunol.6, 520–531 (2006). ArticleCAS Google Scholar
Brodin, P., Karre, K. & Hoglund, P. NK cell education: not an on-off switch but a tunable rheostat. Trends Immunol.30, 143–149 (2009). ArticleCASPubMed Google Scholar
Hoglund, P. et al. Recognition of β2-microglobulin-negative (β2m−) T-cell blasts by natural killer cells from normal but not from β2m− mice: nonresponsiveness controlled by β2m− bone marrow in chimeric mice. Proc. Natl Acad. Sci. USA88, 10332–10336 (1991). ArticleCASPubMedPubMed Central Google Scholar
Liao, N.-S., Bix, M., Zilstra, M., Jaenish, R. & Raulet, D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science253, 199–202 (1991). ArticleCASPubMed Google Scholar
Orr, M. T., Murphy, W. J. & Lanier, L. L. 'Unlicensed' natural killer cells dominate the response to cytomegalovirus infection. Nature Immunol.11, 321–327 (2010). ArticleCAS Google Scholar
Joncker, N. T., Fernandez, N. C., Treiner, E., Vivier, E. & Raulet, D. H. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J. Immunol.182, 4572–4580 (2009). ArticleCASPubMed Google Scholar
Brodin, P., Lakshmikanth, T., Johansson, S., Karre, K. & Hoglund, P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood113, 2434–2441 (2009). ArticleCASPubMed Google Scholar
Guia, S. et al. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance. Sci. Signal.4, ra21 (2011). ArticleCASPubMed Google Scholar
Joncker, N. T., Shifrin, N., Delebecque, F. & Raulet, D. H. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J. Exp. Med.207, 2065–2072 (2010). ArticleCASPubMedPubMed Central Google Scholar
Elliott, J. M., Wahle, J. A. & Yokoyama, W. M. MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J. Exp. Med.207, 2073–2079 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kijima, M., Gardiol, N. & Held, W. Natural killer cell mediated missing-self recognition can protect mice from primary chronic myeloid leukemia in vivo. PLoS ONE6, e27639 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bottino, C., Moretta, L. & Moretta, A. NK cell activating receptors and tumor recognition in humans. Curr. Top. Microbiol. Immunol.298, 175–182 (2006). CASPubMed Google Scholar
Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol.19, 197–223 (2001). This review covers the discovery of activating NK cell receptors. ArticleCASPubMed Google Scholar
Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285, 727–729 (1999). ArticleCASPubMed Google Scholar
Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nature Rev. Immunol.9, 568–580 (2009). ArticleCAS Google Scholar
Raulet, D. H. Roles of the NKG2D immunoreceptor and its ligands. Nature Rev. Immunol.3, 781–790 (2003). ArticleCAS Google Scholar
Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol.1, 119–126 (2000). ArticleCAS Google Scholar
Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity12, 721–727 (2000). ArticleCASPubMed Google Scholar
Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity14, 123–133 (2001). ArticleCASPubMed Google Scholar
Carayannopoulos, L. N. et al. Ligands for murine NKG2D display heterogenous binding behavior. Eur. J. Immunol.32, 597–605 (2002). References 74–77 report the identification of NKG2D ligands. ArticleCASPubMed Google Scholar
Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity28, 571–580 (2008). ArticleCASPubMedPubMed Central Google Scholar
Unni, A. M., Bondar, T. & Medzhitov, R. Intrinsic sensor of oncogenic transformation induces a signal for innate immunosurveillance. Proc. Natl Acad. Sci. USA105, 1686–1691 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature436, 1186–1190 (2005). ArticleCASPubMedPubMed Central Google Scholar
Soriani, A. et al. ATM-ATR dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK cell susceptibility and is associated with a senescent phenotype. Blood113, 3503–3511 (2008). ArticleCASPubMed Google Scholar
Sivori, S. et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J. Exp. Med.186, 1129–1136 (1997). ArticleCASPubMedPubMed Central Google Scholar
Vitale, M. et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med.187, 2065–2072 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pende, D. et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med.190, 1505–1516 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brandt, C. S. et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med.206, 1495–1503 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Wang, Q. & Mariuzza, R. A. Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7-H6. J. Exp. Med.208, 703–714 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med.198, 557–567 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood99, 754–758 (2002). This study reveals the importance of CD16 for monoclonal antibody therapies in humans. ArticleCASPubMed Google Scholar
Veeramani, S. et al. Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood118, 3347–3349 (2011). ArticleCASPubMedPubMed Central Google Scholar
Terme, M., Ullrich, E., Delahaye, N. F., Chaput, N. & Zitvogel, L. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nature Immunol.9, 486–494 (2008). ArticleCAS Google Scholar
Thomas, E. et al. Bone marrow transplantation. N. Engl. J. Med.292, 832–843; 895–902 (1975). ArticleCASPubMed Google Scholar
Weiden, P. L. et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med.300, 1068–1073 (1979). ArticleCASPubMed Google Scholar
Storb, R. Allogeneic hematopoietic stem cell transplantation — yesterday, today, and tomorrow. Exp. Hematol.31, 1–10 (2003). ArticlePubMed Google Scholar
Childs, R. et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N. Engl. J. Med.343, 750–758 (2000). ArticleCASPubMed Google Scholar
Blaise, D. et al. Reduced-intensity preparative regimen and allogeneic stem cell transplantation for advanced solid tumors. Blood103, 435–441 (2004). ArticleCASPubMed Google Scholar
Dong, Z. et al. Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nature Immunol.10, 973–980 (2009). ArticleCAS Google Scholar
Aversa, F. et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med.339, 1186–1193 (1998). ArticleCASPubMed Google Scholar
Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science295, 2097–2100 (2002). A demonstration of the clinical antitumour activity of human NK cells, in the peculiar context of haplotype-mismatched, allogeneic T cell-depleted haematopoietic stem cell transplantation following administration of a myeloablative conditioning regimen. ArticleCASPubMed Google Scholar
Giebel, S. et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood102, 814–819 (2003). ArticleCASPubMed Google Scholar
Ruggeri, L. et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood110, 433–440 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kroger, N. et al. Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br. J. Haematol.129, 631–643 (2005). ArticleCASPubMed Google Scholar
Bignon, J. D. & Gagne, K. KIR matching in hematopoietic stem cell transplantation. Curr. Opin. Immunol.17, 553–559 (2005). ArticleCASPubMed Google Scholar
Poggi, A. & Zocchi, M. R. Cyclosporin A regulates human NK cell apoptosis induced by soluble HLA-I or by target cells. Autoimmun. Rev.4, 532–536 (2005). ArticleCASPubMed Google Scholar
Wang, H. et al. The unexpected effect of cyclosporin A on CD56+CD16− and CD56+CD16+ natural killer cell subpopulations. Blood110, 1530–1539 (2007). ArticleCASPubMedPubMed Central Google Scholar
Moretta, A. et al. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med.182, 875–884 (1995). ArticleCASPubMed Google Scholar
Olcese, L. et al. Killer-cell activatory receptors for MHC class I molecules are included in a multimeric complex expressed by human killer cells. J. Immunol.158, 5083–5086 (1997). CASPubMed Google Scholar
Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature391, 703–707 (1998). ArticleCASPubMed Google Scholar
Verheyden, S., Schots, R., Duquet, W. & Demanet, C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation. Leukemia19, 1446–1451 (2005). ArticleCASPubMed Google Scholar
De Santis, D. et al. Natural killer cell HLA-C epitopes and killer cell immunoglobulin-like receptors both influence outcome of mismatched unrelated donor bone marrow transplants. Tissue Antigens65, 519–528 (2005). ArticleCASPubMed Google Scholar
Cook, M. et al. Donor KIR genotype has a major influence on the rate of cytomegalovirus reactivation following T-cell replete stem cell transplantation. Blood107, 1230–1232 (2006). ArticleCASPubMed Google Scholar
Chen, C. et al. Activating KIR genes are associated with CMV reactivation and survival after non-T-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders. Bone Marrow Transplant.38, 437–444 (2006). ArticleCASPubMed Google Scholar
McQueen, K. L. et al. Donor–recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched, sibling donor hematopoietic cell transplantation. Hum. Immunol.68, 309–323 (2007). ArticleCASPubMedPubMed Central Google Scholar
Clausen, J. et al. Impact of natural killer cell dose and donor killer-cell immunoglobulin-like receptor (KIR) genotype on outcome following human leucocyte antigen-identical haematopoietic stem cell transplantation. Clin. Exp. Immunol.148, 520–528 (2007). ArticleCASPubMedPubMed Central Google Scholar
Holler, E. et al. Increased serum levels of tumor necrosis factor α precede major complications of bone marrow transplantation. Blood75, 1011–1016 (1990). CASPubMed Google Scholar
Storb, R. et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood89, 3048–3054 (1997). CASPubMed Google Scholar
Giralt, S. et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood89, 4531–4536 (1997). CASPubMed Google Scholar
Slavin, S. et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood91, 756–763 (1998). CASPubMed Google Scholar
Blaise, D., Vey, N., Faucher, C. & Mohty, M. Current status of reduced-intensity-conditioning allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica92, 533–541 (2007). ArticlePubMed Google Scholar
Gratwohl, A. et al. The EBMT activity survey 2007 with focus on allogeneic HSCT for AML and novel cellular therapies. Bone Marrow Transplant.43, 275–291 (2009). ArticleCASPubMed Google Scholar
Pende, D. et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood113, 3119–3129 (2009). ArticleCASPubMed Google Scholar
Mohty, M. et al. Recovery of lymphocyte and dendritic cell subsets following reduced intensity allogeneic bone marrow transplantation. Hematology7, 157–164 (2002). ArticleCASPubMed Google Scholar
Larosa, F. et al. Peripheral T-cell expansion and low infection rate after reduced-intensity conditioning and allogeneic blood stem cell transplantation. Bone Marrow Transplant.35, 859–868 (2005). ArticleCASPubMed Google Scholar
Kim, D. H. et al. Non-CD34+ cells, especially CD8+ cytotoxic T cells and CD56+ natural killer cells, rather than CD34 cells, predict early engraftment and better transplantation outcomes in patients with hematologic malignancies after allogeneic peripheral stem cell transplantation. Biol. Blood Marrow Transplant.12, 719–728 (2006). ArticleCASPubMed Google Scholar
Savani, B. N. et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia21, 2145–2152 (2007). ArticleCASPubMed Google Scholar
Dunbar, E. M. et al. The relationship between circulating natural killer cells after reduced intensity conditioning hematopoietic stem cell transplantation and relapse-free survival and graft-versus-host disease. Haematologica93, 1852–1858 (2008). ArticlePubMed Google Scholar
Kolb, H. J. et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood86, 2041–2050 (1995). CASPubMed Google Scholar
Dazzi, F. et al. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood96, 2712–2716 (2000). CASPubMed Google Scholar
Marks, D. I. et al. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood100, 3108–3114 (2002). ArticleCASPubMed Google Scholar
Shimoni, A. et al. Long-term follow-up of recipients of CD8-depleted donor lymphocyte infusions for the treatment of chronic myelogenous leukemia relapsing after allogeneic progenitor cell transplantation. Biol. Blood Marrow Transplant.7, 568–575 (2001). ArticleCASPubMed Google Scholar
Alyea, E. P. et al. CD8+ cell depletion of donor lymphocyte infusions using CD8 monoclonal antibody-coated high-density microparticles (CD8-HDM) after allogeneic hematopoietic stem cell transplantation: a pilot study. Bone Marrow Transplant.34, 123–128 (2004). ArticleCASPubMed Google Scholar
Porter, D. L. et al. Graft-versus-tumor induction with donor leukocyte infusions as primary therapy for patients with malignancies. J. Clin. Oncol.17, 1234 (1999). ArticleCASPubMed Google Scholar
Guo, M. et al. Infusion of HLA-mismatched peripheral blood stem cells improves the outcome of chemotherapy for acute myeloid leukemia in elderly patients. Blood117, 936–941 (2011). ArticleCASPubMed Google Scholar
Miller, J. S. et al. Large scale ex vivo expansion and activation of human natural killer cells for autologous therapy. Bone Marrow Transplant.14, 555–562 (1994). CASPubMed Google Scholar
Passweg, J. R. et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia18, 1835–1838 (2004). ArticleCASPubMed Google Scholar
McKenna, D. H. Jr. et al. Good manufacturing practices production of natural killer cells for immunotherapy: a six-year single-institution experience. Transfusion47, 520–528 (2007). ArticleCASPubMed Google Scholar
Lundqvist, A., McCoy, J. P., Samsel, L. & Childs, R. Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49-mismatched NK cells from MHC-matched donors. Blood109, 3603–3606 (2007). ArticleCASPubMedPubMed Central Google Scholar
Castriconi, R. et al. Human NK cell infusions prolong survival of metastatic human neuroblastoma-bearing NOD/scid mice. Cancer Immunol. Immunother.56, 1733–1742 (2007). ArticleCASPubMed Google Scholar
Shi, J. et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br. J. Haematol.143, 641–653 (2008). ArticlePubMedPubMed Central Google Scholar
Arai, S. et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy10, 625–632 (2008). ArticleCASPubMed Google Scholar
Cho, D. & Campana, D. Expansion and activation of natural killer cells for cancer immunotherapy. Korean J. Lab. Med.29, 89–96 (2009). ArticleCASPubMed Google Scholar
Barkholt, L. et al. Safety analysis of _ex vivo_-expanded NK and NK-like T cells administered to cancer patients: a phase I clinical study. Immunotherapy1, 753–764 (2009). ArticleCASPubMed Google Scholar
Nguyen, S. et al. Infusion of allogeneic natural killer cells in a patient with acute myeloid leukemia in relapse after haploidentical hematopoietic stem cell transplantation. Transfusion51, 1769–1778 (2011). ArticlePubMed Google Scholar
Geller, M. A. et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy13, 98–107 (2011). ArticleCASPubMed Google Scholar
De Somer, L. et al. Recipient lymphocyte infusion in MHC-matched bone marrow chimeras induces a limited lymphohematopoietic host-versus-graft reactivity but a significant antileukemic effect mediated by CD8+ T cells and natural killer cells. Haematologica96, 424–431 (2011). ArticleCASPubMed Google Scholar
Curti, A. et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood118, 3273–3279 (2011). ArticleCASPubMed Google Scholar
Brehm, C. et al. IL-2 stimulated but not unstimulated NK cells induce selective disappearance of peripheral blood cells: concomitant results to a phase I/II study. PLoS ONE6, e27351 (2011). ArticleCASPubMedPubMed Central Google Scholar
Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood105, 3051–3057 (2005). A demonstration of the safety and potential efficacy of NK cell infusion as a cancer therapy in humans. ArticleCASPubMed Google Scholar
Alici, E. IPH-2101, a fully human anti-NK-cell inhibitory receptor mAb for the potential treatment of hematological cancers. Curr. Opin. Mol. Ther.12, 724–733 (2010). CASPubMed Google Scholar
Romagne, F. et al. Pre-clinical characterization of 1–7F9, a novel human anti-KIR therapeutic antibody that augments NK-mediated killing of tumor cells. Blood114, 2667–2677 (2009). A characterization of the first KIR-specific human monoclonal antibody. ArticleCASPubMedPubMed Central Google Scholar
Sola, C. et al. Genetic and antibody-mediated reprogramming of natural killer cell missing-self recognition in vivo. Proc. Natl Acad. Sci. USA106, 12879–12884 (2009). This paper describes preclinical models of the safety and efficacy of targeting MHC class I-specific inhibitory receptors using monoclonal antibodies. ArticleCASPubMedPubMed Central Google Scholar
Benson, D. M. et al. A phase I study of IPH2101, a novel anti-inhibitory KIR monoclonal antibody, in patients with multiple myeloma. J. Clin. Oncol.28 (15 suppl.), 8139 (2010). Article Google Scholar
Vey, N. et al. A phase I study of the anti-natural killer inhibitory receptor (KIR) monoclonal antibody (1–7F9, IPH2101) in elderly patients with acute myeloid leukemia (AML). J. Clin. Oncol.27 (15 suppl.), 3015 (2009). Google Scholar
Benson, D. M. Jr. et al. IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood118, 6387–6391 (2011). ArticleCASPubMedPubMed Central Google Scholar
Walzer, T. & Vivier, E. G-protein-coupled receptors in control of natural killer cell migration. Trends Immunol.32, 486–492 (2011). ArticleCASPubMed Google Scholar
Brand, J. M. et al. Kinetics and organ distribution of allogeneic natural killer lymphocytes transfused into patients suffering from renal cell carcinoma. Stem Cells Dev.13, 307–314 (2004). ArticleCASPubMed Google Scholar
Sun, J. C. & Lanier, L. L. NK cell development, homeostasis and function: parallels with CD8 T cells. Nature Rev. Immunol.11, 645–657 (2011). ArticleCAS Google Scholar
Park, S. H., Kyin, T., Bendelac, A. & Carnaud, C. The contribution of NKT cells, NK cells, and other γ-chain-dependent non-T non-B cells to IL-12-mediated rejection of tumors. J. Immunol.170, 1197–1201 (2003). ArticleCASPubMed Google Scholar
Smyth, M. J. et al. Sequential production of interferon-γ by NK1.1+ T cells and natural killer cells is essential for the antimetastatic effect of α-galactosylceramide. Blood99, 1259–1266 (2002). ArticleCASPubMed Google Scholar
Metelitsa, L. S., Weinberg, K. I., Emanuel, P. D. & Seeger, R. C. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia17, 1068–1077 (2003). ArticleCASPubMed Google Scholar
Renukaradhya, G. J. et al. Type I NKT cells protect (and type II NKT cells suppress) the host's innate antitumor immune response to a B-cell lymphoma. Blood111, 5637–5645 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wu, D. Y., Segal, N. H., Sidobre, S., Kronenberg, M. & Chapman, P. B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med.198, 173–181 (2003). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, K., Kurosawa, Y., Taniguchi, M., Steinman, R. M. & Fujii, S. Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J. Exp. Med.204, 2641–2653 (2007). ArticleCASPubMedPubMed Central Google Scholar
Swann, J. B., Coquet, J. M., Smyth, M. J. & Godfrey, D. I. CD1-restricted T cells and tumor immunity. Curr. Top. Microbiol. Immunol.314, 293–323 (2007). CASPubMed Google Scholar
Crowe, N. Y., Smyth, M. J. & Godfrey, D. I. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med.196, 119–127 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kammertoens, T., Qin, Z., Briesemeister, D., Bendelac, A. & Blankenstein, T. B-cells and IL-4 promote methylcholanthrene-induced carcinogenesis but there is no evidence for a role of T/NKT-cells and their effector molecules (Fas-ligand, TNF-α, perforin). Int. J. Cancer 31 Jan 2012 (doi:10.1002/ijc.27411). ArticleCASPubMed Google Scholar
Song, L. et al. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J. Clin. Invest.119, 1524–1536 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tahir, S. M. et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol.167, 4046–4050 (2001). ArticleCASPubMed Google Scholar
Yanagisawa, K. et al. Impaired proliferative response of Vα24 NKT cells from cancer patients against α-galactosylceramide. J. Immunol.168, 6494–6499 (2002). ArticleCASPubMed Google Scholar
Tachibana, T. et al. Increased intratumor Vα24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin. Cancer Res.11, 7322–7327 (2005). ArticleCASPubMed Google Scholar
Schneiders, F. L. et al. Circulating invariant natural killer T-cell numbers predict outcome in head and neck squamous cell carcinoma: updated analysis with 10-year follow-up. J. Clin. Oncol.30, 567–570 (2012). ArticlePubMed Google Scholar
Terabe, M. et al. A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med.202, 1627–1633 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kawano, T. et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc. Natl Acad. Sci. USA95, 5690–5693 (1998). ArticleCASPubMedPubMed Central Google Scholar
Parekh, V. V. et al. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest.115, 2572–2583 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. et al. Impact of bacteria on the phenotype, functions, and therapeutic activities of invariant NKT cells in mice. J. Clin. Invest.118, 2301–2315 (2008). CASPubMedPubMed Central Google Scholar
Cerundolo, V., Barral, P. & Batista, F. D. Synthetic iNKT cell-agonists as vaccine adjuvants — finding the balance. Curr. Opin. Immunol.22, 417–424 (2010). ArticleCASPubMed Google Scholar
Stanic, A. K. et al. Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T (iNKT) cell receptor. J. Immunol.171, 4539–4551 (2003). ArticleCASPubMed Google Scholar
Oki, S., Tomi, C., Yamamura, T. & Miyake, S. Preferential Th2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo. Int. Immunol.17, 1619–1629 (2005). ArticleCASPubMed Google Scholar
Im, J. S. et al. Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity30, 888–898 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sullivan, B. A. et al. Mechanisms for glycolipid antigen-driven cytokine polarization by Vα14i NKT cells. J. Immunol.184, 141–153 (2010). ArticleCASPubMed Google Scholar
Yue, S. C. et al. Direct CD1d-mediated stimulation of APC IL-12 production and protective immune response to virus infection in vivo. J. Immunol.184, 268–276 (2010). ArticleCASPubMed Google Scholar
Teng, M. W., Yue, S., Sharkey, J., Exley, M. A. & Smyth, M. J. CD1d activation and blockade: a new antitumor strategy. J. Immunol.182, 3366–3371 (2009). ArticleCASPubMed Google Scholar
Hix, L. M. et al. CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis. PLoS ONE6, e20702 (2011). ArticleCASPubMedPubMed Central Google Scholar
Barral, P. et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc. Natl Acad. Sci. USA105, 8345–8350 (2008). ArticleCASPubMedPubMed Central Google Scholar
Barral, P. et al. CD169+ macrophages present lipid antigens to mediate early activation of _i_NKT cells in lymph nodes. Nature Immunol.11, 303–312 (2010). ArticleCAS Google Scholar
Motohashi, S. et al. A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res.12, 6079–6086 (2006). ArticleCASPubMed Google Scholar
Yamasaki, K. et al. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin. Immunol.138, 255–265 (2011). ArticleCASPubMed Google Scholar
Giaccone, G. et al. A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res.8, 3702–3709 (2002). CASPubMed Google Scholar
Schneiders, F. L. et al. Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin. Immunol.140, 130–141 (2011). ArticleCASPubMed Google Scholar
Nieda, M. et al. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood103, 383–389 (2004). ArticleCASPubMed Google Scholar
Ishikawa, A. et al. A phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res.11, 1910–1917 (2005). ArticleCASPubMed Google Scholar
Chang, D. H. et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med.201, 1503–1517 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kunii, N. et al. Combination therapy of _in vitro_-expanded natural killer T cells and α-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci.100, 1092–1098 (2009). ArticleCASPubMed Google Scholar
Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nature Immunol.11, 1127–1135 (2010). ArticleCAS Google Scholar
O'Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol.7, 507–516 (2006). ArticleCAS Google Scholar
Bukowski, J. F., Biron, C. A. & Welsh, R. M. Elevated natural killer cell-mediated cytotoxicity, plasma interferon, and tumor cell rejection in mice persistently infected with lymphocytic choriomeningitis virus. J. Immunol.131, 991–996 (1983). CASPubMed Google Scholar
Carnaud, C. et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol.163, 4647–4650 (1999). CASPubMed Google Scholar
Eberl, G. & MacDonald, H. R. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol.30, 985–992 (2000). ArticleCASPubMed Google Scholar
Hermans, I. F. et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol.171, 5140–5147 (2003). ArticleCASPubMed Google Scholar
Wesley, J. D. et al. Cutting edge: IFN-γ signaling to macrophages is required for optimal Vα14i NK T/NK cell cross-talk. J. Immunol.174, 3864–3868 (2005). ArticleCASPubMed Google Scholar
Gonzalez-Aseguinolaza, G. et al. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med.195, 617–624 (2002). ArticleCASPubMedPubMed Central Google Scholar
Huang, Y. et al. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, α-galactosylceramide. Vaccine26, 1807–1816 (2008). ArticleCASPubMed Google Scholar
Kamijuku, H. et al. Mechanism of NKT cell activation by intranasal coadministration of α-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol.1, 208–218 (2008). ArticleCASPubMed Google Scholar
Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature413, 531–534 (2001). ArticleCASPubMed Google Scholar
Oki, S., Chiba, A., Yamamura, T. & Miyake, S. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest.113, 1631–1640 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yu, K. O. et al. Modulation of CD1d-restricted NKT cell responses by using _N_-acyl variants of α-galactosylceramides. Proc. Natl Acad. Sci. USA102, 3383–3388 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schmieg, J., Yang, G., Franck, R. W. & Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J. Exp. Med.198, 1631–1641 (2003). ArticleCASPubMedPubMed Central Google Scholar
Andrews, D. M. et al. Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J. Exp. Med.207, 1333–1343 (2010). ArticleCASPubMedPubMed Central Google Scholar
Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature481, 394–398 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Ogino, S., Galon, J., Fuchs, C. S. & Dranoff, G. Cancer immunology-analysis of host and tumor factors for personalized medicine. Nature Rev. Clin. Oncol.8, 711–719 (2011). ArticleCAS Google Scholar
Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med.191, 1895–1903 (2000). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med.192, 741–754 (2000). ArticleCASPubMedPubMed Central Google Scholar
Exley, M. A. et al. Selective activation, expansion, and monitoring of human iNKT cells with a monoclonal antibody specific for the TCR α-chain CDR3 loop. Eur. J. Immunol.38, 1756–1766 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pellicci, D. G. et al. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nature Immunol.12, 827–833 (2011). This study describes a previously unknown population of CD1d-restricted NKT cells. ArticleCAS Google Scholar
Brennan, P. J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nature Immunol.12, 1202–1211 (2011). This study shows that the expression of a newly identified endogenous ligand for the NKT cell TCR is increased during some infections and promotes NKT cell activation. ArticleCAS Google Scholar
Brigl, M., Bry, L., Kent, S. C., Gumperz, J. E. & Brenner, M. B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nature Immunol.4, 1230–1237 (2003). ArticleCAS Google Scholar
Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature434, 525–529 (2005). ArticleCASPubMed Google Scholar
Salio, M. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl Acad. Sci. USA104, 20490–20495 (2007). ArticleCASPubMedPubMed Central Google Scholar
Paget, C. et al. Activation of invariant NKT cells by Toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity27, 597–609 (2007). ArticleCASPubMed Google Scholar
Kärre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature319, 675–678 (1986). ArticlePubMed Google Scholar
Ljunggren, H. G. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today11, 237–244 (1990). ArticleCASPubMed Google Scholar
Moretta, L. et al. Allorecognition by NK cells: nonself or no self? Immunol Today13, 300–306 (1992). ArticleCASPubMed Google Scholar
Karlhofer, F. M., Ribaudo, R. K. & Yokoyama, W. M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature358, 66–70 (1992). ArticleCASPubMed Google Scholar
Moretta, A. et al. Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol.14, 619–648 (1996). ArticleCASPubMed Google Scholar
Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature391, 795–799 (1998). ArticleCASPubMed Google Scholar
Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1b. J. Exp. Med.188, 1841–1848 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vilches, C. & Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol.20, 217–251 (2002). ArticleCASPubMed Google Scholar
Olcese, L. et al. Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases. J. Immunol.156, 4531–4534 (1996). CASPubMed Google Scholar
Vivier, E., Nunes, J. A. & Vely, F. Natural killer cell signaling pathways. Science306, 1517–1519 (2004). ArticleCASPubMed Google Scholar
Kumar, V. & McNerney, M. E. A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nature Rev. Immunol.5, 363–374 (2005). ArticleCAS Google Scholar