T cell receptor signalling networks: branched, diversified and bounded (original) (raw)
Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. & Davis, M. M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity38, 373–383 (2013). ArticleCASPubMed CentralPubMed Google Scholar
Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science276, 2057–2062 (1997). ArticleCASPubMed Google Scholar
Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity29, 848–862 (2008). ArticleCASPubMed Google Scholar
Seddon, B. & Zamoyska, R. Regulation of peripheral T-cell homeostasis by receptor signalling. Curr. Opin. Immunol.15, 321–324 (2003). ArticleCASPubMed Google Scholar
Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene23, 7990–8000 (2004). ArticleCASPubMed Google Scholar
Parsons, S. J. & Parsons, J. T. Src family kinases, key regulators of signal transduction. Oncogene23, 7906–7909 (2004). ArticleCASPubMed Google Scholar
Salmond, R. J., Filby, A., Qureshi, I., Caserta, S. & Zamoyska, R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol. Rev.228, 9–22 (2009). ArticleCASPubMed Google Scholar
Seddon, B. & Zamoyska, R. TCR signals mediated by Src family kinases are essential for the survival of naive T cells. J. Immunol.169, 2997–3005 (2002). ArticleCASPubMed Google Scholar
Stefanova, I., Dorfman, J. R. & Germain, R. N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature420, 429–434 (2002). ArticleCASPubMed Google Scholar
Acuto, O., Di Bartolo, V. & Michel, F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nature Rev. Immunol.8, 699–712 (2008). A comprehensive review detailing negative feedback mechanisms in proximal TCR signalling, including extensive definitions of signalling modules to help consider signalling in terms of interacting groups rather than as purely linear processes. ArticleCAS Google Scholar
Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell55, 301–308 (1988). ArticleCASPubMed Google Scholar
Artyomov, M. N., Lis, M., Devadas, S., Davis, M. M. & Chakraborty, A. K. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc. Natl Acad. Sci. USA107, 16916–16921 (2010). ArticleCASPubMedPubMed Central Google Scholar
Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ɛ cytoplasmic tyrosine-based motif. Cell135, 702–713 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nature Immunol.7, 803–809 (2006). ArticleCAS Google Scholar
Lovatt, M. et al. Lck regulates the threshold of activation in primary T cells, while both Lck and Fyn contribute to the magnitude of the extracellular signal-related kinase response. Mol. Cell. Biol.26, 8655–8665 (2006). ArticleCASPubMed CentralPubMed Google Scholar
Deindl, S. et al. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell129, 735–746 (2007). ArticleCASPubMed Google Scholar
Boggon, T. J. & Eck, M. J. Structure and regulation of Src family kinases. Oncogene23, 7918–7927 (2004). ArticleCASPubMed Google Scholar
Yamaguchi, H. & Hendrickson, W. A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature384, 484–489 (1996). ArticleCASPubMed Google Scholar
Rhee, I. & Veillette, A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nature Immunol.13, 439–447 (2012). ArticleCAS Google Scholar
Schmedt, C. et al. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature394, 901–904 (1998). ArticleCASPubMed Google Scholar
Schmedt, C. & Tarakhovsky, A. Autonomous maturation of α/β T lineage cells in the absence of COOH-terminal Src kinase (Csk). J. Exp. Med.193, 815–826 (2001). ArticleCASPubMed CentralPubMed Google Scholar
Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol.21, 107–137 (2003). ArticleCASPubMed Google Scholar
McNeill, L. et al. The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity27, 425–437 (2007). ArticleCASPubMed Google Scholar
Zikherman, J. et al. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity32, 342–354 (2010). ArticleCASPubMed CentralPubMed Google Scholar
Cloutier, J. F., Chow, L. M. & Veillette, A. Requirement of the SH3 and SH2 domains for the inhibitory function of tyrosine protein kinase p50csk in T lymphocytes. Mol. Cell. Biol.15, 5937–5944 (1995). ArticleCASPubMed CentralPubMed Google Scholar
Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity32, 766–777 (2010). This paper shows that a large proportion of LCK is constitutively active in resting T cells and that TCR triggering does not alter the proportion of phosphorylated LCK, leading to the conclusion that TCR triggering is likely to be controlled by changes in the local concentration of active LCK rather than by switching LCK between inactive and active states. ArticleCASPubMed CentralPubMed Google Scholar
Rossy, J., Owen, D. M., Williamson, D. J., Yang, Z. & Gaus, K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nature Immunol.14, 82–89 (2013). Supported by evidence from high-resolution microscopy and the reconstitution of Jurkat T cells with various LCK mutants, this study proposes that LCK clustering upon TCR triggering is determined by the conformation of LCK. ArticleCAS Google Scholar
Horejsi, V., Zhang, W. & Schraven, B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nature Rev. Immunol.4, 603–616 (2004). ArticleCAS Google Scholar
Borger, J., Filby, A. & Zamoyska, R. Differential polarisation of C-terminal Src kinase between naïve and antigen-experienced CD8+ T cells. J. Immunol. 20 Feb 2013 (doi:10.4049/jimmunol.1202408) ArticleCASPubMed Google Scholar
Schoenborn, J. R., Tan, Y. X., Zhang, C., Shokat, K. M. & Weiss, A. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci. Signal.4, ra59 (2011). This study shows that CSK and CD45 regulate the activity of LCK and influence feedback circuits that affect the threshold of activation in T cells. ArticlePubMed CentralCASPubMed Google Scholar
Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature404, 999–1003 (2000). ArticleCASPubMed Google Scholar
Davidson, D., Bakinowski, M., Thomas, M. L., Horejsi, V. & Veillette, A. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol. Cell. Biol.23, 2017–2028 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Dobenecker, M. W., Schmedt, C., Okada, M. & Tarakhovsky, A. The ubiquitously expressed Csk adaptor protein Cbp is dispensable for embryogenesis and T-cell development and function. Mol. Cell. Biol.25, 10533–10542 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Xu, S., Huo, J., Tan, J. E. & Lam, K. P. Cbp deficiency alters Csk localization in lipid rafts but does not affect T-cell development. Mol. Cell. Biol.25, 8486–8495 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Smida, M., Posevitz-Fejfar, A., Horejsi, V., Schraven, B. & Lindquist, J. A. A novel negative regulatory function of the phosphoprotein associated with glycosphingolipid-enriched microdomains: blocking Ras activation. Blood110, 596–615 (2007). The authors show that PAG interacts with negative regulators of T cell signalling, including CSK, in primary human T cells and that knocking downPAGwith siRNA enhances SFK activity and RAS activation. ArticleCASPubMed Google Scholar
Dong, S. et al. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J. Exp. Med.203, 2509–2518 (2006). ArticleCASPubMed CentralPubMed Google Scholar
Yasuda, T. et al. Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int. Immunol.19, 487–495 (2007). ArticleCASPubMed Google Scholar
Zhang, S. Q. et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell13, 341–355 (2004). ArticlePubMed Google Scholar
Bivona, T. G. et al. Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1. Nature424, 694–698 (2003). ArticleCASPubMed Google Scholar
Chiu, V. K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol.4, 343–350 (2002). ArticleCASPubMed Google Scholar
Inder, K. et al. Activation of the MAPK module from different spatial locations generates distinct system outputs. Mol. Biol. Cell19, 4776–4784 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Lockyer, P. J., Kupzig, S. & Cullen, P. J. CAPRI regulates Ca2+-dependent inactivation of the Ras-MAPK pathway. Curr. Biol.11, 981–986 (2001). ArticleCASPubMed Google Scholar
Perez de Castro, I., Bivona, T. G., Philips, M. R. & Pellicer, A. Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus. Mol. Cell. Biol.24, 3485–3496 (2004). ArticlePubMed CentralCASPubMed Google Scholar
Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature444, 724–729 (2006). The first study to report that different strengths of TCR signalling in thymocytes alters the compartmentalization of RAS and MAPK to different subcellular locations and therefore propagates signals to different branches of the signalling cascade. ArticleCASPubMed Google Scholar
Balagopalan, L., Coussens, N. P., Sherman, E., Samelson, L. E. & Sommers, C. L. The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb Perspect Biol2, a005512 (2010). ArticlePubMed CentralCASPubMed Google Scholar
Finco, T. S., Kadlecek, T., Zhang, W., Samelson, L. E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity9, 617–626 (1998). ArticleCASPubMed Google Scholar
Mingueneau, M. et al. Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor. Immunity31, 197–208 (2009). This paper describes the surprising finding that loss of LAT in peripheral T cells does not inhibit but rather dysregulates TCR signalling, resulting in unrestrained T cell proliferation and the development of pathology, highlighting a previously unknown role for LAT in regulating TCR signals (for further details see reference 53). ArticleCASPubMed Google Scholar
Roncagalli, R. et al. Lymphoproliferative disorders involving T helper effector cells with defective LAT signalosomes. Semin. Immunopathol.32, 117–125 (2010). ArticleCASPubMed Google Scholar
Chevrier, S., Genton, C., Malissen, B., Malissen, M. & Acha-Orbea, H. Dominant role of CD80-CD86 over CD40 and ICOSL in the massive polyclonal B Cell activation mediated by LATY136F CD4+ T cells. Front. Immunol.3, 27 (2012). ArticlePubMed CentralPubMed Google Scholar
Roncagalli, R., Mingueneau, M., Gregoire, C., Malissen, M. & Malissen, B. LAT signaling pathology: an “autoimmune” condition without T cell self-reactivity. Trends Immunol.31, 253–259 (2010). ArticleCASPubMed Google Scholar
Rouquette-Jazdanian, A. K., Sommers, C. L., Kortum, R. L., Morrison, D. K. & Samelson, L. E. LAT-independent Erk activation via Bam32-PLC-γ1-Pak1 complexes: GTPase-independent Pak1 activation. Mol. Cell48, 298–312 (2012). ArticleCASPubMed CentralPubMed Google Scholar
Koretzky, G. A., Abtahian, F. & Silverman, M. A. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nature Rev. Immunol.6, 67–78 (2006). ArticleCAS Google Scholar
Chen, H. & Kahn, M. L. Reciprocal signaling by integrin and nonintegrin receptors during collagen activation of platelets. Mol. Cell. Biol.23, 4764–4777 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science285, 221–227 (1999). CASPubMed Google Scholar
Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature395, 82–86 (1998). ArticleCASPubMed Google Scholar
Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nature Immunol.6, 1253–1262 (2005). ArticleCAS Google Scholar
Bunnell, S. C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol.158, 1263–1275 (2002). ArticleCASPubMed CentralPubMed Google Scholar
Seminario, M. C. & Bunnell, S. C. Signal initiation in T-cell receptor microclusters. Immunol. Rev.221, 90–106 (2008). ArticleCASPubMed Google Scholar
Dustin, M. L. & Depoil, D. New insights into the T cell synapse from single molecule techniques. Nature Rev. Immunol.11, 672–684 (2011). A comprehensive and timely review describing new super-resolution techniques to visualize TCR signalling at a nano- or single-molecular level and how this technology has influenced our understanding of TCR triggering. ArticleCAS Google Scholar
Lillemeier, B. F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunol.11, 90–96 (2010). ArticleCAS Google Scholar
Sherman, E. et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity35, 705–720 (2011). ArticleCASPubMed CentralPubMed Google Scholar
Purbhoo, M. A. et al. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci. Signal.3, ra36 (2010). ArticleCASPubMed Google Scholar
Williamson, D. J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nature Immunol.12, 655–662 (2011). References 63–66 present evidence for various models of how and where LAT molecules may localize and interact with the TCR. ArticleCAS Google Scholar
Barda-Saad, M. et al. Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO J.29, 2315–2328 (2010). ArticleCASPubMed CentralPubMed Google Scholar
Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity9, 607–616 (1998). ArticleCASPubMed Google Scholar
Singleton, K. L. et al. Spatiotemporal patterning during T cell activation is highly diverse. Sci. Signal.2, ra15 (2009). This paper follows the spatiotemporal patterning of 32 individual signalling components in primary mouse T cells stimulated by professional APCs and a variety of ligands of differing affinity. This systems level approach shows that patterning is highly diverse. ArticlePubMed CentralPubMed Google Scholar
Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med.181, 577–584 (1995). ArticleCASPubMed Google Scholar
Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol.28, 716–729 (1998). ArticleCASPubMed Google Scholar
Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol.1, 23–29 (2000). ArticleCAS Google Scholar
Berg, L. J., Finkelstein, L. D., Lucas, J. A. & Schwartzberg, P. L. Tec family kinases in T lymphocyte development and function. Annu. Rev. Immunol.23, 549–600 (2005). ArticleCASPubMed Google Scholar
Burbach, B. J., Medeiros, R. B., Mueller, K. L. & Shimizu, Y. T-cell receptor signaling to integrins. Immunol. Rev.218, 65–81 (2007). ArticleCASPubMed Google Scholar
Dustin, M. L. T-cell activation through immunological synapses and kinapses. Immunol. Rev.221, 77–89 (2008). ArticleCASPubMed Google Scholar
Sixt, M., Bauer, M., Lammermann, T. & Fassler, R. β1 integrins: zip codes and signaling relay for blood cells. Curr. Opin. Cell Biol.18, 482–490 (2006). ArticleCASPubMed Google Scholar
Nguyen, K., Sylvain, N. R. & Bunnell, S. C. T cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76. Immunity28, 810–821 (2008). ArticleCASPubMed Google Scholar
Adachi, K. & Davis, M. M. T-cell receptor ligation induces distinct signaling pathways in naive versus antigen-experienced T cells. Proc. Natl Acad. Sci. USA108, 1549–1554 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gloerich, M. & Bos, J. L. Regulating Rap small G-proteins in time and space. Trends Cell Biol.21, 615–623 (2011). ArticleCASPubMed Google Scholar
Bivona, T. G. et al. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J. Cell Biol.164, 461–470 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Sebzda, E., Bracke, M., Tugal, T., Hogg, N. & Cantrell, D. A. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nature Immunol.3, 251–258 (2002). ArticleCAS Google Scholar
Epler, J. A., Liu, R., Chung, H., Ottoson, N. C. & Shimizu, Y. Regulation of β1 integrin-mediated adhesion by T cell receptor signaling involves ZAP-70 but differs from signaling events that regulate transcriptional activity. J. Immunol.165, 4941–4949 (2000). ArticleCASPubMed Google Scholar
Hogg, N., Patzak, I. & Willenbrock, F. The insider's guide to leukocyte integrin signalling and function. Nature Rev. Immunol.11, 416–426 (2011). A comprehensive review focusing on LFA1 activation in T cells, discussing both inside-out and outside-in integrin signalling. ArticleCAS Google Scholar
Raab, M. et al. T cell receptor “inside-out” pathway via signaling module SKAP1-RapL regulates T cell motility and interactions in lymph nodes. Immunity32, 541–556 (2010). ArticleCASPubMed Google Scholar
Au-Yeung, B. B. et al. A genetically selective inhibitor demonstrates a function for the kinase Zap70 in regulatory T cells independent of its catalytic activity. Nature Immunol.11, 1085–1092 (2010). A study highlighting the adaptor properties of ZAP70 that are important for inside-out activation of LFA1, a pathway crucial for TRegcell function. ArticleCAS Google Scholar
Marski, M., Kandula, S., Turner, J. R. & Abraham, C. CD18 is required for optimal development and function of CD4+CD25+ T regulatory cells. J. Immunol.175, 7889–7897 (2005). ArticleCASPubMed Google Scholar
Li, L. et al. Rap1-GTP is a negative regulator of Th cell function and promotes the generation of CD4+CD103+ regulatory T cells in vivo. J. Immunol.175, 3133–3139 (2005). ArticleCASPubMed Google Scholar
Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature427, 154–159 (2004). ArticleCASPubMed Google Scholar
Cemerski, S. et al. The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse. Immunity26, 345–355 (2007). ArticleCASPubMed CentralPubMed Google Scholar
Huppa, J. B., Gleimer, M., Sumen, C. & Davis, M. M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nature Immunol.4, 749–755 (2003). ArticleCAS Google Scholar
Cloutier, J. F. & Veillette, A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J.15, 4909–4918 (1996). ArticleCASPubMed CentralPubMed Google Scholar
Cloutier, J. F. & Veillette, A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J. Exp. Med.189, 111–121 (1999). ArticleCASPubMed CentralPubMed Google Scholar
Brownlie, R. J. et al. Lack of the phosphatase PTPN22 increases adhesion of murine regulatory T cells to improve their immunosuppressive function. Sci. Signal.5, ra87 (2012). Mice that lack PTPN22 were shown to have increased numbers of TRegcells with enhanced function, which were capable of restraining hyperactivePtpn22−/−T effector cells and maintaining T cell tolerance. The increased TRegcell functionality could be explained at least in part by increased LFA1 adhesion (see also reference 86). ArticlePubMed CentralCASPubMed Google Scholar
Hasegawa, K. et al. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science303, 685–689 (2004). ArticleCASPubMed Google Scholar
Bottini, N., Vang, T., Cucca, F. & Mustelin, T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin. Immunol.18, 207–213 (2006). ArticleCASPubMed Google Scholar
Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet.75, 330–337 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Bottini, N. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nature Genet.36, 337–338 (2004). ArticleCASPubMed Google Scholar
Zhang, J. et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nature Genet.43, 902–907 (2011). ArticleCASPubMed Google Scholar
Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nature Genet.37, 1317–1319 (2005). ArticleCASPubMed Google Scholar
Mann, M. Functional and quantitative proteomics using SILAC. Nature Rev. Mol. Cell Biol.7, 952–958 (2006). ArticleCAS Google Scholar
Bendall, S. C., Nolan, G. P., Roederer, M. & Chattopadhyay, P. K. A deep profiler's guide to cytometry. Trends Immunol.33, 323–332 (2012). ArticleCASPubMed CentralPubMed Google Scholar
Basiji, D. A., Ortyn, W. E., Liang, L., Venkatachalam, V. & Morrissey, P. Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med.27, 653–670, (2007). ArticlePubMed CentralPubMed Google Scholar