Calcium signalling: dynamics, homeostasis and remodelling (original) (raw)
Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol.1, 11–21 (2000). CAS Google Scholar
Carafoli, E., Santella, L., Brance, D. & Brisi, M. Generation, control, and processing of cellular calcium signals. Crit. Rev. Biochem. Mol. Biol.36, 107–260 (2001). CASPubMed Google Scholar
Bootman, M. D., Berridge, M. J. & Roderick, H. L. Calcium signalling: more messengers, more channels, more complexity. Curr. Biol.12, R563–R565 (2002). CASPubMed Google Scholar
Kelley, G. G., Reks, S. E., Ondrako, J. M. & Smrcka, A. V. Phospholipase Cε: a novel Ras effector. EMBO J.20, 743–754 (2001). CASPubMedPubMed Central Google Scholar
Saunders, C. M. et al. PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development129, 3533–3544 (2002). The mystery of how mammalian eggs are activated seems to have been solved by the discovery that the sperm injects a new PLC, PLCζ, into the egg to stimulate the production of Ins(1,4,5)P3. CASPubMed Google Scholar
Van der Wal, J., Habets, R., Várnai, P., Balla, T. & Jalink, K. Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J. Biol. Chem.276, 15337–15344 (2001). CASPubMed Google Scholar
Kim, D. et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature389, 290–293 (1997). CASPubMed Google Scholar
Tanaka, J. et al. Gq protein α-subunits Gαq and Gα11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. Eur. J. Neurosci.12, 781–792 (2000). CASPubMed Google Scholar
Kawabate, S. et al. Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature383, 89–92 (1996). Google Scholar
Luo, X., Popov, S., Bera, A. K., Wilkie, T. M. & Muallem, S. RGS proteins provide biochemical control of agonist-evoked [Ca2+]I oscillations. Mol. Cell7, 651–660 (2001). CASPubMed Google Scholar
Cancela, J. M., Churchill, G. C. & Galione, A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature398, 74–76 (1999). CASPubMed Google Scholar
Patel, S., Churchill, G. C. & Galione, A. Coordination of Ca2+ signalling by NAADP. Trends Biochem. Sci.26, 482–489 (2001). CASPubMed Google Scholar
Cancela, J. M., Van Coppenolle, F., Galione, A., Tepikin, A. V. & Petersen, O. H. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J.21, 909–919 (2002). This paper describes the complex interactions among the different intracellular Ca2+-mobilizing messengers such as Ins(1,4,5)P3, cADPR and NAADP. CASPubMedPubMed Central Google Scholar
Lee, H. C. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev.77, 1133–1164 (1997). CASPubMed Google Scholar
Tohgo, A. et al. Lysine 129 of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) participates in the binding of ATP to inhibit the cyclic ADP-ribose hydrolase. J. Biol. Chem.272, 3879–3882 (1997). CASPubMed Google Scholar
Wilson, H. L. et al. ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor: a primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction. J. Biol. Chem.276, 11180–11188 (2001). CASPubMed Google Scholar
Churchill, G. C. et al. NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell111, 703–708 (2002). CASPubMed Google Scholar
Hua, S. -Y. et al. Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron12, 1073–1079 (1994). CASPubMed Google Scholar
Hashii, M., Minabe, Y. & Higashida, H. cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L-type voltage-activated Ca2+ channels in NG108–15 neuronal cells. Biochem. J.345, 207–215 (2000). PubMedPubMed Central Google Scholar
Currie, K. P. M., Swann, K., Galione, A. & Scott, R. H. Activation of Ca2+-dependent currents in cultured rat dorsal root ganglion neurones by a sperm factor and cyclic ADP-ribose. Mol. Biol. Cell3, 1415–1425 (1992). CASPubMedPubMed Central Google Scholar
Cui, Y., Galione, A. & Terrar, D. A. Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem. J.342, 269–273 (1999). CASPubMedPubMed Central Google Scholar
Empson, R. M. & Galione, A. Cyclic ADP-ribose enhances coupling between voltage-gated Ca2+ entry and intracellular Ca2+ release. J. Biol. Chem.272, 20967–20970 (1997). CASPubMed Google Scholar
Lukyanenko, V., Györke, I., Wiesner, T. F. & Györke, S. Potentiation of Ca2+ release by cADP-ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. Circ. Res.89, 614–622 (2001). This paper indicates that cADPR might function to enhance Ca2+signalling by stimulating the SERCA pump to increase the luminal level of Ca2+. CASPubMed Google Scholar
Rakovic, S. et al. An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J. Biol. Chem.274, 17820–17827 (1999). CASPubMed Google Scholar
Noguchi, N. et al. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J. Biol. Chem.272, 3133–3136 (1997). CASPubMed Google Scholar
Koizumi. S., Lipp, P., Berridge, M. J. & Bootman, M. D. Regulation of ryanodine receptor opening by lumenal Ca2+ underlies quantal Ca2+ release in PC12 cells. J. Biol. Chem.274, 33327–33333 (1999). CASPubMed Google Scholar
Young, K. W. et al. Lysophosphatidic acid-induced Ca2+ mobilisation requires intracellular sphingosine 1-phosphate production: potential involvement of endogenous Edg-4 receptors. J. Biol. Chem.275, 38532–38539 (2000). Evidence of Ca2+mobilization by distinct pathways using Ins(1,4,5)P3or S1P within the same cell. CASPubMed Google Scholar
Melendez, A. J. & Khaw, A. A. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J. Biol. Chem.277, 17255–17262 (2002). CASPubMed Google Scholar
Schnurbus, R., De Pietri Tonelli, D., Grohovaz, F. & Zacchetti, D. Re-evaluation of primary structure, topology, and localization of Scamper, a putative intracellular Ca2+ channel activated by sphingosylphosphocholine. Biochem. J.362, 183–189 (2002). SCaMPER has been widely cited as a receptor for Ca2+-mobilizing sphingolipids. This paper presents a detailed characterization of the SCaMPER protein, which indicates that it is unlikely to function as a conventional Ca2+channel. CASPubMedPubMed Central Google Scholar
Mignen, O. & Shuttleworth, T. J. _I_ARC, a novel arachidonate-regulated, noncapacitative Ca2+ entry channel. J. Biol. Chem.275, 9114–9119 (2000). The principal route for hormone-stimulated Ca2+entry into cells was believed to be by a store-operated mechanism. Emerging evidence indicates that many cells express a distinct Ca2+-entry pathway that is activated by arachidonic acid. CASPubMed Google Scholar
Clapham, D. E., Runnels, L. W. & Strübing, C. The TRP ion channel family. Nature Rev. Neurosci.2, 387–396 (2001). CAS Google Scholar
Minke, B. & Cook, B. TRP channel proteins and signal transduction. Physiol. Rev.82, 429–472 (2002). CASPubMed Google Scholar
Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell108, 595–598 (2002). CASPubMed Google Scholar
Vennekens, R., Voets, T., Bindels, R. J. M., Droogmans, G. & Nilius, B. Current understanding of mammalian TRP homologues. Cell Calcium31, 253–264 (2002). CASPubMed Google Scholar
Nadif Kasri, N. et al. The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. Biochim. Biophys. Acta1600, 19–31 (2002). CASPubMed Google Scholar
Taylor, C. W. & Laude, A. J. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium32, 321–334 (2002). CASPubMed Google Scholar
Yang, J. et al. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc. Natl Acad. Sci. USA99, 7711–7716 (2002). CASPubMedPubMed Central Google Scholar
Roderick, H. L. et al. Inhibition of inositol 1,4,5-trisphosphate (InsP3)-induced calcium release by neuronal calcium binding proteins (CaBP). J. Physiol. (Lond.)547P, PC36 (2003). Google Scholar
Koller, A. et al. Association of phospholamban with a cGMP kinase signaling complex. Biochem. Biophys. Res. Commun.300, 155–160 (2003). CASPubMed Google Scholar
Yokoyama, K. et al. BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP3 receptor. EMBO J.21, 83–92 (2002). CASPubMedPubMed Central Google Scholar
DeSouza, N. et al. Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J. Biol. Chem.277, 39397–39400 (2002). CASPubMed Google Scholar
Bezprozvanny, I., Watras, J. & Ehrlich, B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature351, 751–754 (1991). A classic paper that described the co-activation of Ins(1,4,5)P3Rs by Ca2+and Ins(1,4,5)P3.
Balshaw, D. M., Xu, L., Yamaguchi, N., Pasek, D. A. & Meissner, G. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J. Biol. Chem.276, 20144–20153 (2001). CASPubMed Google Scholar
Marks, A. R., Marx, S. O. & Reiken, S. Regulation of ryanodine receptors via macromolecular complexes: a novel role for leucine/isoleucine zippers. Trends Cardiovasc. Med.12, 166–170 (2002). CASPubMed Google Scholar
Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell101, 365–376 (2000). CASPubMed Google Scholar
Lokuta, A. J., Meyers, M. B., Sander, P. R., Fishman, G. I. & Valdivia, H. H. Modulation of cardiac ryanodine receptors by sorcin. J. Biol. Chem.272, 25333–25338 (1997). CASPubMed Google Scholar
Muller, F. U. et al. Junctional sarcoplasmic reticulum transmembrane proteins in the heart. Basic Res. Cardiol.97, I52–I55 (2002). PubMed Google Scholar
Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y. M. & Jones, L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem.272, 23389–23397 (1997). Much attention has focused on accessory cytosolic proteins as modulators of the RYRs, but there also is evidence that the transmembrane proteins junctin and triadin cooperate with the luminal protein calsequestrin to regulate the activity of these release channels. CASPubMed Google Scholar
Nauli, S. M. et al. J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genet.33, 129–137 (2003). CASPubMed Google Scholar
Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. Nature Cell Biol.4, 191–197 (2002). The cellular locations and functions of polycystins are not well understood, but they somehow seem to regulate epithelial-cell proliferation. This paper presents evidence that one member of the family forms functional channels that can function in a Ca2+-induced Ca2+release mode. CASPubMed Google Scholar
Gonzalez-Perrett, S. et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc. Natl Acad. Sci. USA98, 1182–1187 (2001). CASPubMed Google Scholar
Cai, Y. et al. Identification and characterisation of polycystin-2, the PKD2 gene product. J. Biol. Chem.274, 28557–28565 (1999). CASPubMed Google Scholar
John, L. M., Mosquera-Caro, M., Camacho, P. & Lechleiter, J. D. Control of IP3-mediated Ca2+ puffs in Xenopus laevis oocytes by the Ca2+-binding protein parvalbumin. J. Physiol. (Lond.)535, 3–16 (2001). CAS Google Scholar
Palecek, J., Lips, M. B. & Keller, B. U. Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J. Physiol. (Lond.)520, 485–502 (1999). CAS Google Scholar
Schwaller, B. et al. Prolonged contraction–relaxation cycle of fast-twitch muscles in parvalbumin knockout mice. Am. J. Physiol.276, C395–C403 (1999). CASPubMed Google Scholar
Caillard, O. et al. Role of calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl Acad. Sci. USA97, 13372–13377 (2000). CASPubMedPubMed Central Google Scholar
Collins, T. J., Lipp, P., Berridge, M. J. & Bootman, M. D. Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J. Biol. Chem.276, 26411–26420 (2001). CASPubMed Google Scholar
Colegrove, S. L., Albrecht, M. A. & Friel, D. D. Quantitative analysis of mitochondrial Ca2+ uptake and release in sympathetic neurons. J. Gen. Physiol.115, 371–388 (2000). CASPubMedPubMed Central Google Scholar
Caride, A. J. et al. Delayed activation of the plasma membrane calcium pump by a sudden increase in Ca2+: fast pumps reside in fast cells. Cell Calcium30, 49–57 (2001). CASPubMed Google Scholar
Wuytack, F., Raeymaekers, L. & Missiaen, L. The molecular physiology of the SERCA and SPCA pumps. Cell Calcium32, 279–305 (2002). CASPubMed Google Scholar
Ozil, J. P. & Swann, K. Stimulation of repetitive calcium transients in mouse eggs. J. Physiol. (Lond.)483, 331–346 (1995) CAS Google Scholar
Gomez, T. M., Snow, D. M. & Letourneau, P. C. Characterization of spontaneous calcium transients in nerve growth cones and their effect on growth cone migration. Neuron14, 1233–1246 (1995). CASPubMed Google Scholar
Gomez, T. M. Robles, E., Poo, M -m. & Spitzer, N. C. (2001) Filopodial calcium transients promote substrate-dependent growth cone turning. Science291, 1983–1987 (2001). This paper shows that filopodia scout ahead of neuronal growth cones to detect preferred growth substrates. When engaged, these substrates induce local Ca2+signals in the filopodia that are transmitted back to the growth cone to deflect its path. An increased frequency of Ca2+transients correlates with greater turning. CASPubMed Google Scholar
Tang, F., Dent, E. W. & Kalil, K. Spontaneous calcium transients in developing cortical neurons regulate axonal outgrowth. J. Neurosci.23, 927–936 (2003). CASPubMedPubMed Central Google Scholar
Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron17, 275–285 (1996). CASPubMed Google Scholar
Ciccolini, F. et al. Local and global spontaneous calcium events regulate neurite outgrowth and onset of GABAergic phenotype during neural precursor differentiation. J. Neurosci.23, 103–111 (2003). CASPubMedPubMed Central Google Scholar
Ehrhardt, D. W., Wais, R. & Long, S. R. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell85, 673–681 (1996). CASPubMed Google Scholar
Tashiro, A., Goldberg, J. & Yuste, R. Calcium oscillations in neocortical astrocytes under epileptiform conditions. J. Neurobiol.50, 45–55 (2001). Google Scholar
Ferrari, M. B., Ribbeck, K., Hagler, D. J. Jr. & Spitzer, N. C. A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes. J. Cell Biol.141, 1349–1356 (1998). CASPubMedPubMed Central Google Scholar
Uhlén, P. et al. α-Haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature277, 694–697 (2000). Google Scholar
Giannone, G., Rondé, P., Gaire, M., Haiech, J. & Takeda, K. Calcium oscillations trigger focal adhesion disassembly in human U87 astrocytoma cells. J. Biol. Chem.277, 26364–26371 (2002). CASPubMed Google Scholar
Tse, A., Tse, F. W., Almers, W. & Hille, B. Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science260, 82–84 (1993). CASPubMed Google Scholar
Hajnóczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell82, 415–424 (1995). PubMed Google Scholar
Dolmetsch, R. E., Xu, K. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature392, 933–936 (1998). CASPubMed Google Scholar
Li, W -h., Liopis, J., Whitney, M., Xlokarnik, G. & Tsien, R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature392, 936–941 (1998). References 74 and 75 have helped to establish the importance of frequency-modulated Ca2+signalling as a mechanism to control differential gene activation. CASPubMed Google Scholar
Haisenleder, D. J. et al. Gonadotrophin subunit transcriptional responses to calcium signals in the rat: evidence for regulation by pulse frequency. Biol. Reprod.65, 1789–1793 (2001). CASPubMed Google Scholar
Buonanno, A. & Fields, R. D. Gene regulation by patterned electrical activity during neural and skeletal muscle development. Curr. Opin. Neurobiol.9, 110–120 (1999). CASPubMed Google Scholar
Olsen, E. A. & Williams, R. S. Remodelling muscles with calcineurin. Bioessays22, 510–519 (2000). Google Scholar
De Koninck, P. & Shulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science279, 227–230 (1998). CASPubMed Google Scholar
Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell95, 307–318 (1998). CASPubMed Google Scholar
Niggli, E. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu. Rev. Physiol.61, 311–335 (1999). CASPubMed Google Scholar
Thomas, D. et al. Microscopic properties of elementary Ca2+ release sites in non-excitable cells. Curr. Biol.10, 8–15 (2000). CASPubMed Google Scholar
Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature418, 845–852 (2002). CASPubMed Google Scholar
Fauquier, T., Guérineau, N. C., McKinney, R. A., Bauer, K. & Mollard, P. Folliculostellate cell network: A route for long-distance communication in the anterior pituitary. Proc. Natl Acad. Sci. USA98, 8891–8896 (2001). CASPubMedPubMed Central Google Scholar
Wallingford, J. B., Ewald, A. J., Harland, R. M. & Fraser, S. E. Calcium signaling during convergent extension in Xenopus. Curr. Biol.11, 652–661 (2001). CASPubMed Google Scholar
Robb-Gaspers, L. D. & Thomas, A. P. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J. Biol. Chem.270, 8102–8107 (1995). CASPubMed Google Scholar
Yashiro, Y. & Duling, B. R. Integrated Ca2+ signaling between smooth muscle and endothelium of resistance vessels. Circ. Res.87, 1048–1054 (2000). CASPubMed Google Scholar
Wang, S. -Q., Song, L. -S., Lakatta, E. G. & Cheng, H. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature410, 592–596 (2001). CASPubMed Google Scholar
Robert, V. et al. Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J.20, 4998–5007 (2001). CASPubMedPubMed Central Google Scholar
Crabtree, G. R. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NFAT. Cell96, 611–614 (1999). CASPubMed Google Scholar
Mellström, B. & Naranjo, J. R. Mechanisms of Ca2+-dependent transcription. Curr. Opin. Neurobiol.11, 312–319 (2001). PubMed Google Scholar
West, A. E. et al. Calcium regulation of neuronal gene expression. Proc. Natl Acad. Sci. USA98, 11024–11031 (2001). CASPubMedPubMed Central Google Scholar
McKinsey, T. A., Zhang, C. L. & Olsen, E. N. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci.27, 40–47 (2002). CASPubMed Google Scholar
Carafoli, E., Genazzani, A. & Guerini, D. Calcium controls the transcription of its own transporters and channels in developing neurons. Biochem. Biophys. Res. Commun.266, 624–632 (1999). CASPubMed Google Scholar
Guerini, D., Wang, X., Li, L., Genazzani, A. & Carafoli, E. Calcineurin controls the expression of isoforms 4CII of the plasma membrane Ca2+ pump in neurons. J. Biol. Chem.275, 3706–3712 (2000). CASPubMed Google Scholar
Li, L., Guerini, D. & Carafoli, E. Calcineurin controls the transcription of Na+/Ca2+ exchanger isoforms in developing cerebellar neurons. J. Biol. Chem.275, 20903–20910 (2000). CASPubMed Google Scholar
Genazzani, A. A., Carafoli, E. & Guerini, D. Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proc. Natl Acad. Sci. USA96, 5797–5801 (1999). CASPubMedPubMed Central Google Scholar
Graef, I. A. et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature401, 703–708 (1999). This paper and reference 97 have shown that Ca2+can regulate the transcription of some of its signalling components, such as Ins(1,4,5)P3Rs. CASPubMed Google Scholar
Brini, M., Bano, D., Manni, S., Rizzuto, R. & Carafoli, E. Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca2+ signalling. EMBO J.19, 4926–4935 (2000). CASPubMedPubMed Central Google Scholar
Ji, Y. et al. Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. J. Biol. Chem.275, 38073–38080 (2000). CASPubMed Google Scholar
Zhao, X. -S., Shin, D. M., Liu, L. H., Shull, G. E. & Muallem, S. Plasticity and adaptation of Ca2+ signalling and Ca2+-dependent exocytosis in SERCA2+/− mice. EMBO J.20, 2680–2689 (2001). CASPubMedPubMed Central Google Scholar
Song, L. -S. et al. Ca2+ signaling in cardiac myocytes overexpressing the α1 subunit of L-type Ca2+ channel. Circ. Res.90, 174–181 (2002). CASPubMed Google Scholar
Molkentin, J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell93, 215–228 (1998). CASPubMedPubMed Central Google Scholar
Kirchhefer, U. et al. Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1. J. Biol. Chem.276, 4142–4149 (2001). CASPubMed Google Scholar
Zhang, L., Franzini-Armstrong, C., Ramesh, V. & Jones, L. R. Structural alterations in cardiac calcium release units resulting from overexpression of junctin. J. Mol. Cell. Cardiol.33, 233–247 (2001). CASPubMed Google Scholar
Jones, L. R. et al. Regulation of calcium signalling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest.101, 1385–1393 (1998). CASPubMedPubMed Central Google Scholar
Mende, U. et al. Transient cardiac expression of constitutively active Gαq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc. Natl Acad. Sci. USA95, 13893–13898 (1998). CASPubMedPubMed Central Google Scholar
Knollmann, B. C., Knollmann-Ritschel, B. E., Weissman, N. J., Jones, L. R. & Morad, M. Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J. Physiol. (Lond.)525, 483–498 (2000). CAS Google Scholar
Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/ Gα11 in cardiomyocytes. Nature Med.7, 1236–1240 (2001). This paper provides direct evidence that receptors that are coupled to Gqα/G11αfunction in cardiac hypertrophy. CASPubMed Google Scholar
Antos, C. L. et al. Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA99, 907–912 (2002). CASPubMedPubMed Central Google Scholar
Sato, Y. et al. Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation. J. Biol. Chem.276, 9392–9399 (2001). CASPubMed Google Scholar
Song, Q. et al. Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy. J. Clin. Invest.111, 859–867 (2003). CASPubMedPubMed Central Google Scholar
Haghighi, K. et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest.111, 869–876 (2003). CASPubMedPubMed Central Google Scholar
Wilkins, B. J. & Molkentin, J. D. Calcineurin and cardiac hypertrophy: where have we been? where are we going? J. Physiol.541, 1–8 (2002). CASPubMedPubMed Central Google Scholar
Xin, H. -B. et al. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature416, 334–337 (2002). CASPubMed Google Scholar
Schwinger et al. Reduced Ca2+-sensitivity of SERCA2a in failing human myocardium due to reduced serine-16 phospholamban phosphorylation. J. Mol. Cell. Cardiol.31, 479–491 (1999). PubMed Google Scholar
Piacentino III, V. et al. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ. Res.92, 651–658 (2003). Google Scholar
Naga Prasad, S. V., Nienaber, J. & Rockman, H. A. β-adrenergic axis and heart disease. Trends Genet.17, S44–S49 (2001). CASPubMed Google Scholar