Understanding nucleotide excision repair and its roles in cancer and ageing (original) (raw)
Gates, K. S. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem. Res. Toxicol.22, 1747–1760 (2009). ArticleCASPubMedPubMed Central Google Scholar
Swenberg, J. A. et al. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci.120, S130–145 (2011). ArticleCASPubMed Google Scholar
Sale, J. E., Lehmann, A. R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Rev. Mol. Cell Biol.13, 141–152 (2012). ArticleCAS Google Scholar
Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature411, 366–374 (2001). ArticleCASPubMed Google Scholar
Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J.13, 1831–1843 (1994). ArticleCASPubMedPubMed Central Google Scholar
Nishi, R. et al. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol. Cell. Biol.25, 5664–5674 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell2, 223–232 (1998). ArticleCASPubMed Google Scholar
Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev.15, 507–521 (2001). ArticleCASPubMedPubMed Central Google Scholar
Maillard, O., Camenisch, U., Clement, F. C., Blagoev, K. B. & Naegeli, H. DNA repair triggered by sensors of helical dynamics. Trends Biochem. Sci.32, 494–499 (2007). ArticleCASPubMed Google Scholar
Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature449, 570–575 (2007). Shows the crystal structure of Rad4, the yeast orthologue of XPC, bound to a DNA substrate that contains a small unpaired region. Rad4 recognizes the local destabilization of the DNA duplex, which is common to many structurally unrelated DNA lesions, and thus explains the ability of Rad4 and XPC to detect a myriad of lesions. ArticleCASPubMed Google Scholar
Hoogstraten, D. et al. Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J. Cell Sci.121, 2850–2859 (2008). ArticleCASPubMed Google Scholar
Reardon, J. T. & Sancar, A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev.17, 2539–2551 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chu, G. & Chang, E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science242, 564–567 (1988). ArticleCASPubMed Google Scholar
Wakasugi, M. et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem.277, 1637–1640 (2002). ArticleCASPubMed Google Scholar
Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell113, 357–367 (2003). ArticleCASPubMed Google Scholar
Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell8, 213–224 (2001). Demonstrates, in response to localized UV damage, the sequential assembly of NER proteins and identifies XPC as the main initiator of GG-NER. ArticleCASPubMed Google Scholar
Yokoi, M. et al. The xeroderma pigmentosum group C protein complex XPC HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J. Biol. Chem.275, 9870–9875 (2000). ArticleCASPubMed Google Scholar
Riedl, T., Hanaoka, F. & Egly, J. M. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J.22, 5293–5303 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem.279, 19074–19083 (2004). ArticleCASPubMed Google Scholar
Compe, E. & Egly, J. M. TFIIH: when transcription met DNA repair. Nature Rev. Mol. Cell Biol.13, 343–354 (2012). ArticleCAS Google Scholar
Coin, F., Oksenych, V. & Egly, J. M. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell26, 245–256 (2007). ArticleCASPubMed Google Scholar
Oksenych, V., Bernardes de Jesus, B., Zhovmer, A., Egly, J. M. & Coin, F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J.28, 2971–2980 (2009). ArticleCASPubMedPubMed Central Google Scholar
Winkler, G. S. et al. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J. Biol. Chem.275, 4258–4266 (2000). ArticleCASPubMed Google Scholar
Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol. Cell36, 642–653 (2009). Shows that upon DNA bindingin vitro, TFIIH scans the DNA in a 5′–3′ direction, which suggests that it verifies the presence of a lesion after being recruited by XPC. ArticleCASPubMed Google Scholar
Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell133, 789–800 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wolski, S. C. et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol.6, e149 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Pugh, R. A., Wu, C. G. & Spies, M. Regulation of translocation polarity by helicase domain 1 in SF2B helicases. EMBO J.31, 503–514 (2012). ArticleCASPubMed Google Scholar
Mathieu, N., Kaczmarek, N., Ruthemann, P., Luch, A. & Naegeli, H. DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr. Biol.23, 204–212 (2013). ArticleCASPubMed Google Scholar
Camenisch, U., Dip, R., Schumacher, S. B., Schuler, B. & Naegeli, H. Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nature Struct. Mol. Biol.13, 278–284 (2006). ArticleCAS Google Scholar
Hoogstraten, D. et al. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell10, 1163–1174 (2002). ArticleCASPubMed Google Scholar
Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell31, 9–20 (2008). ArticleCASPubMed Google Scholar
Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet.36, 714–719 (2004). ArticleCASPubMed Google Scholar
Theil, A. F. et al. Disruption of TTDA results in complete nucleotide excision repair deficiency and embryonic lethality. PLoS Genet.9, e1003431 (2013). ArticleCASPubMedPubMed Central Google Scholar
Luijsterburg, M. S. et al. Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair. J. Cell Biol.189, 445–463 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fagbemi, A. F., Orelli, B. & Scharer, O. D. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair10, 722–729 (2011). ArticleCASPubMedPubMed Central Google Scholar
de Laat, W. L. et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev.12, 2598–2609 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dunand-Sauthier, I. et al. The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J. Biol. Chem.280, 7030–7037 (2005). ArticleCASPubMed Google Scholar
Zotter, A. et al. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV induced DNA damage depends on functional TFIIH. Mol. Cell. Biol.26, 8868–8879 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP G/CS patients. Mol. Cell26, 231–243 (2007). ArticleCASPubMed Google Scholar
Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J.28, 1111–1120 (2009). Shows that during NER, the 5′ incision made by XPF–ERCC1 precedes the 3′ incision made by XPG and that it is sufficient to initiate gap-filling DNA synthesis. ArticleCASPubMedPubMed Central Google Scholar
Tsodikov, O. V. et al. Structural basis for the recruitment of ERCC1 XPF to nucleotide excision repair complexes by XPA. EMBO J.26, 4768–4776 (2007). ArticleCASPubMedPubMed Central Google Scholar
Orelli, B. et al. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J. Biol. Chem.285, 3705–3712 (2010). ArticleCASPubMed Google Scholar
Mocquet, V. et al. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J.27, 155–167 (2008). ArticleCASPubMed Google Scholar
Overmeer, R. M. et al. Replication protein A safeguards genome integrity by controlling NER incision events. J. Cell Biol.192, 401–415 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell37, 714–727 (2010). ArticleCASPubMed Google Scholar
Moser, J. et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III α in a cell-cycle-specific manner. Mol. Cell27, 311–323 (2007). Identifies, together with reference 51, cell-cycle-dependent use of different ligases and DNA polymerases for NER gap-filling DNA synthesis and ligation. ArticleCASPubMed Google Scholar
Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for U.V. light-induced apoptosis. Oncogene13, 823–831 (1996). CASPubMed Google Scholar
Marietta, C. & Brooks, P. J. Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. EMBO Rep.8, 388–393 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hendriks, G. et al. Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis. Curr. Biol.20, 170–175 (2010). ArticleCASPubMed Google Scholar
Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol.9, 958–970 (2008). ArticleCAS Google Scholar
Fousteri, M., Vermeulen, W., van Zeeland, A. A. & Mullenders, L. H. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol. Cell23, 471–482 (2006). ArticleCASPubMed Google Scholar
Schwertman, P. et al. UV sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nature Genet.44, 598–602 (2012). ArticleCASPubMed Google Scholar
de Waard, H. et al. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol. Cell. Biol.24, 7941–7948 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stevnsner, T., Muftuoglu, M., Aamann, M. D. & Bohr, V. A. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech. Ageing Dev.129, 441–448 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kuraoka, I. et al. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J. Biol. Chem.278, 7294–7299 (2003). ArticleCASPubMed Google Scholar
Kathe, S. D., Shen, G. P. & Wallace, S. S. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. J. Biol. Chem.279, 18511–18520 (2004). ArticleCASPubMed Google Scholar
Larsen, E., Kwon, K., Coin, F., Egly, J. M. & Klungland, A. Transcription activities at 8 oxoG lesions in DNA. DNA Repair3, 1457–1468 (2004). ArticleCASPubMed Google Scholar
Menoni, H., Hoeijmakers, J. H. & Vermeulen, W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J. Cell Biol.199, 1037–1046 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nardo, T. et al. A UV sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc. Natl Acad. Sci. USA106, 6209–6214 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tornaletti, S., Reines, D. & Hanawalt, P. C. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J. Biol. Chem.274, 24124–24130 (1999). ArticleCASPubMed Google Scholar
Wilson, M. D., Harreman, M. & Svejstrup, J. Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta1829, 151–157 (2013). ArticleCASPubMed Google Scholar
Sigurdsson, S., Dirac-Svejstrup, A. B. & Svejstrup, J. Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell38, 202–210 (2010). ArticleCASPubMedPubMed Central Google Scholar
Citterio, E. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair–transcription-coupling factor. Mol. Cell. Biol.20, 7643–7653 (2000). ArticleCASPubMedPubMed Central Google Scholar
Beerens, N., Hoeijmakers, J. H., Kanaar, R., Vermeulen, W. & Wyman, C. The CSB protein actively wraps DNA. J. Biol. Chem.280, 4722–4729 (2005). ArticleCASPubMed Google Scholar
Bensimon, A., Aebersold, R. & Shiloh, Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett.585, 1625–1639 (2011). ArticleCASPubMed Google Scholar
Pines, A. et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol.199, 235–249 (2012). Shows that PARylation facilitates GG-NER through stabilization of DDB2 and recruitment of the chromatin remodeller ALC1. ArticleCASPubMedPubMed Central Google Scholar
Jackson, S. P. & Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell49, 795–807 (2013). ArticleCASPubMed Google Scholar
Povlsen, L. K. et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nature Cell Biol.14, 1089–1098 (2012). ArticleCASPubMed Google Scholar
Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature458, 461–467 (2009). ArticleCASPubMed Google Scholar
Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem.81, 291–322 (2012). ArticleCASPubMed Google Scholar
Jacq, X., Kemp, M., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes & DNA damage response pathways. Cell Biochem. Biophys. (2013).
Wang, Q. E. et al. DNA repair factor XPC is modified by SUMO 1 and ubiquitin following UV irradiation. Nucleic Acids Res.33, 4023–4034 (2005). ArticleCASPubMedPubMed Central Google Scholar
Poulsen, S. L. et al. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J. Cell Biol.201, 797–807 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sugasawa, K. et al. UV induced ubiquitylation of XPC protein mediated by UV DDB-ubiquitin ligase complex. Cell121, 387–400 (2005). Reports that ubiquitylation of XPC by the UV–DDB complex regulates its DNA damage affinity. ArticleCASPubMed Google Scholar
Kapetanaki, M. G. et al. The DDB1–CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV damaged DNA sites. Proc. Natl Acad. Sci. USA103, 2588–2593 (2006). ArticleCASPubMed Google Scholar
Scrima, A. et al. Detecting UV lesions in the genome: The modular CRL4 ubiquitin ligase does it best! FEBS Lett.585, 2818–2825 (2011). ArticleCASPubMed Google Scholar
Moser, J. et al. The UV damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV induced photo lesions. DNA Repair4, 571–582 (2005). ArticleCASPubMed Google Scholar
Okuda, Y. et al. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair3, 1285–1295 (2004). ArticleCASPubMed Google Scholar
Ng, J. M. et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23 dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev.17, 1630–1645 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bergink, S. et al. Recognition of DNA damage by XPC coincides with disruption of the XPC RAD23 complex. J. Cell Biol.196, 681–688 (2012). ArticleCASPubMedPubMed Central Google Scholar
Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev.20, 1429–1434 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nakazawa, Y. et al. Mutations in UVSSA cause UV sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nature Genet.44, 586–592 (2012). ArticleCASPubMed Google Scholar
Zhang, X. et al. Mutations in UVSSA cause UV sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nature Genet.44, 593–597 (2012). Shows, together with references 59 and 94, the cloning and functional analysis ofUVSSAin TC-NER, the causative gene of UVSS (the last unresolved NER-deficient disorder). ArticleCASPubMed Google Scholar
Fei, J. & Chen, J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J. Biol. Chem.287, 35118–35126 (2012). ArticleCASPubMedPubMed Central Google Scholar
Anindya, R. et al. A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol. Cell38, 637–648 (2010). ArticleCASPubMedPubMed Central Google Scholar
Woudstra, E. C. et al. A Rad26 Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature415, 929–933 (2002). ArticleCASPubMed Google Scholar
Smerdon, M. J. DNA repair and the role of chromatin structure. Curr. Opin. Cell Biol.3, 422–428 (1991). ArticleCASPubMed Google Scholar
Gong, F., Kwon, Y. & Smerdon, M. J. Nucleotide excision repair in chromatin and the right of entry. DNA Repair4, 884–896 (2005). ArticleCASPubMed Google Scholar
Soria, G., Polo, S. E. & Almouzni, G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol. Cell46, 722–734 (2012). ArticleCASPubMed Google Scholar
Guerrero-Santoro, J. et al. The cullin 4B based UV damaged DNA-binding protein ligase binds to UV damaged chromatin and ubiquitinates histone H2A. Cancer Res.68, 5014–5022 (2008). ArticleCASPubMed Google Scholar
Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4 DDB ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell22, 383–394 (2006). ArticlePubMedCAS Google Scholar
Lans, H., Marteijn, J. A. & Vermeulen, W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin5, 4 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hara, R. & Sancar, A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol. Cell. Biol.22, 6779–6787 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L., Zhang, Q., Jones, K., Patel, M. & Gong, F. The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage. Cell Cycle8, 3953–3959 (2009). ArticleCASPubMed Google Scholar
Zhao, Q. et al. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J. Biol. Chem.284, 30424–30432 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jiang, Y. et al. INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway. Proc. Natl Acad. Sci. USA107, 17274–17279 (2010). ArticleCASPubMedPubMed Central Google Scholar
Datta, A. et al. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat. Res.486, 89–97 (2001). ArticleCASPubMed Google Scholar
Rapic-Otrin, V., McLenigan, M. P., Bisi, D. C., Gonzalez, M. & Levine, A. S. Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res.30, 2588–2598 (2002). ArticleCASPubMed Google Scholar
Martinez, E. et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol. Cell. Biol.21, 6782–6795 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yu, S., Teng, Y., Waters, R. & Reed, S. H. How chromatin is remodelled during DNA repair of UV induced DNA damage in Saccharomyces cerevisiae. PLoS Genet.7, e1002124 (2011). ArticleCASPubMedPubMed Central Google Scholar
Guo, R., Chen, J., Mitchell, D. L. & Johnson, D. G. GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic Acids Res.39, 1390–1397 (2011). ArticleCASPubMed Google Scholar
Rubbi, C. P. & Milner, J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J.22, 975–986 (2003). ArticleCASPubMedPubMed Central Google Scholar
Muftuoglu, M., Selzer, R., Tuo, J., Brosh, R. M. Jr & Bohr, V. A. Phenotypic consequences of mutations in the conserved motifs of the putative helicase domain of the human Cockayne syndrome group B gene. Gene283, 27–40 (2002). ArticleCASPubMed Google Scholar
Citterio, E. et al. Biochemical and biological characterization of wild-type and ATPase-deficient Cockayne syndrome B repair protein. J. Biol. Chem.273, 11844–11851 (1998). ArticleCASPubMed Google Scholar
Selzer, R. R. et al. Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV induced DNA damage and 8 oxoguanine lesions in human cells. Nucleic Acids Res.30, 782–793 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lake, R. J., Geyko, A., Hemashettar, G., Zhao, Y. & Fan, H. Y. UV induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N terminal autorepression. Mol. Cell37, 235–246 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cho, I., Tsai, P. F., Lake, R. J., Basheer, A. & Fan, H. Y. ATP-dependent chromatin remodeling by Cockayne syndrome protein B and NAP1 like histone chaperones is required for efficient transcription-coupled DNA repair. PLoS Genet.9, e1003407 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dinant, C. et al. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV induced DNA damage. Mol. Cell51, 469–479 (2013). ArticleCASPubMed Google Scholar
Oksenych, V. et al. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet.9, e1003611 (2013). ArticleCASPubMedPubMed Central Google Scholar
Adam, S., Polo, S. E. & Almouzni, G. Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA. Cell155, 94–106 (2013). Provides evidence, together with reference 122, for extensive chromatin remodelling during TC-NER, which implicates accelerated H2A–H2B exchange by the histone chaperone complex FACT (facilitates chromatin transcription) and incorporation of H3.3 by HIRA in this process. ArticleCASPubMed Google Scholar
Gaillard, P. H. et al. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell86, 887–896 (1996). ArticleCASPubMed Google Scholar
Green, C. M. & Almouzni, G. Local action of the chromatin assembly factor CAF 1 at sites of nucleotide excision repair in vivo. EMBO J.22, 5163–5174 (2003). ArticleCASPubMedPubMed Central Google Scholar
Polo, S. E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell127, 481–493 (2006). ArticleCASPubMed Google Scholar
Giglia-Mari, G. et al. Differentiation driven changes in the dynamic organization of basal transcription initiation. PLoS Biol.7, e1000220 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, S. C., Parsons, S. & Hanawalt, P. C. DNA repair in cultured keratinocytes. J. Invest. Dermatol.81, 179s–183s (1983). ArticleCASPubMed Google Scholar
Li, G., Ho, V. C., Mitchell, D. L., Trotter, M. J. & Tron, V. A. Differentiation-dependent p53 regulation of nucleotide excision repair in keratinocytes. Am. J. Pathol.150, 1457–1464 (1997). CASPubMedPubMed Central Google Scholar
Nouspikel, T. & Hanawalt, P. C. Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression. Mol. Cell. Biol.20, 1562–1570 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nouspikel, T. & Hanawalt, P. C. Impaired nucleotide excision repair upon macrophage differentiation is corrected by E1 ubiquitin-activating enzyme. Proc. Natl Acad. Sci. USA103, 16188–16193 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nouspikel, T. & Hanawalt, P. C. DNA repair in terminally differentiated cells. DNA Repair1, 59–75 (2002). ArticleCASPubMed Google Scholar
van der Wees, C. et al. Nucleotide excision repair in differentiated cells. Mutat. Res.614, 16–23 (2007). ArticleCASPubMed Google Scholar
Nouspikel, T. P., Hyka-Nouspikel, N. & Hanawalt, P. C. Transcription domain-associated repair in human cells. Mol. Cell. Biol.26, 8722–8730 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lans, H. et al. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet.6, e1000941 (2010). Reports that inC. elegansgerm cells, GG-NER is active and maintains the entire genome, whereas in later stage somatic cells TC-NER rather than GG-NER is important. ArticlePubMedPubMed CentralCAS Google Scholar
Jansen, J. et al. Nucleotide excision repair in rat male germ cells: low level of repair in intact cells contrasts with high dual incision activity in vitro. Nucleic Acids Res.29, 1791–1800 (2001). ArticleCASPubMedPubMed Central Google Scholar
Xu, G. et al. Nucleotide excision repair activity varies among murine spermatogenic cell types. Biol. Reprod.73, 123–130 (2005). ArticleCASPubMed Google Scholar
Roerink, S. F., Koole, W., Stapel, L. C., Romeijn, R. J. & Tijsterman, M. A broad requirement for TLS polymerases η and κ, and interacting sumoylation and nuclear pore proteins, in lesion bypass during C. elegans embryogenesis. PLoS Genet.8, e1002800 (2012). ArticleCASPubMedPubMed Central Google Scholar
de Waard, H. et al. Cell-type-specific consequences of nucleotide excision repair deficiencies: Embryonic stem cells versus fibroblasts. DNA Repair7, 1659–1669 (2008). ArticleCASPubMed Google Scholar
Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet.38, 445–476 (2004). ArticleCASPubMed Google Scholar
Brooks, P. J. The 8,5′ cyclopurine-2′ deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair7, 1168–1179 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience145, 1388–1396 (2007). ArticleCASPubMed Google Scholar
Niedernhofer, L. J., Bohr, V. A., Sander, M. & Kraemer, K. H. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients. Mech. Ageing Dev.132, 340–347 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jaspers, N. G. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair1, 1027–1038 (2002). ArticleCASPubMed Google Scholar
Ljungman, M. & Lane, D. P. Transcription — guarding the genome by sensing DNA damage. Nature Rev. Cancer4, 727–737 (2004). ArticleCAS Google Scholar
Laugel, V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech. Ageing Dev.134, 161–170 (2013). ArticleCASPubMed Google Scholar
Dolle, M. E. et al. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat. Res.596, 22–35 (2006). ArticleCASPubMed Google Scholar
Niedernhofer, L. J. et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature444, 1038–1043 (2006). Describes the identification of the first patient found to carry a mutation in the gene encoding XPF, which causes prominent symptoms of premature ageing; a corresponding mouseErcc1mutant exhibits a very similar progeroid phenotype. Expression profiling of mouse tissues reveals thatErcc1mutant mice also have suppressed growth and upregulated cellular defences resembling the response to caloric restriction, which promotes longevity. These features are presumably an attempt to counteract the accelerated ageing. ArticleCASPubMed Google Scholar
Garinis, G. A., van der Horst, G. T., Vijg, J. & Hoeijmakers, J. H. DNA damage and ageing: new-age ideas for an age-old problem. Nature Cell Biol.10, 1241–1247 (2008). ArticleCASPubMed Google Scholar
Andressoo, J. O. et al.An Xpb mouse model for combined xeroderma pigmentosum and Cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol. Cell. Biol.29, 1276–1290 (2009). ArticleCASPubMed Google Scholar
de Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science296, 1276–1279 (2002). ArticleCASPubMed Google Scholar
Vermeulen, W. et al. A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nature Genet.27, 299–303 (2001). ArticleCASPubMed Google Scholar
Trego, K. S. et al. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle10, 1998–2007 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gregg, S. Q., Robinson, A. R. & Niedernhofer, L. J. Physiological consequences of defects in ERCC1 XPF DNA repair endonuclease. DNA Repair10, 781–791 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jaspers, N. G. et al. First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am. J. Hum. Genet.80, 457–466 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bogliolo, M. et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet.92, 800–806 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kashiyama, K. et al. Malfunction of nuclease ERCC1 XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet.92, 807–819 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dolle, M. E. et al. Broad segmental progeroid changes in short-lived Ercc1−/Δ7 mice. Pathobiol. Aging Age Relat. Dis.1, 7219 (2011). ArticleCAS Google Scholar
Horibata, K. et al. Complete absence of Cockayne syndrome group B gene product gives rise to UV sensitive syndrome but not Cockayne syndrome. Proc. Natl Acad. Sci. USA101, 15410–15415 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lukas, J., Lukas, C. & Bartek, J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nature Cell Biol.13, 1161–1169 (2011). ArticleCASPubMed Google Scholar
Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol.19, 238–245 (2007). ArticleCASPubMed Google Scholar
Nam, E. A. & Cortez, D. ATR signalling: more than meeting at the fork. Biochem. J.436, 527–536 (2011). ArticleCASPubMed Google Scholar
Marini, F. et al. DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc. Natl Acad. Sci. USA103, 17325–17330 (2006). ArticleCASPubMedPubMed Central Google Scholar
Marteijn, J. A. et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol.186, 835–847 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hanasoge, S. & Ljungman, M. H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis28, 2298–2304 (2007). ArticleCASPubMed Google Scholar
MacDougall, C. A., Byun, T. S., Van, C., Yee, M. C. & Cimprich, K. A. The structural determinants of checkpoint activation. Genes Dev.21, 898–903 (2007). ArticleCASPubMedPubMed Central Google Scholar
Giannattasio, M. et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell40, 50–62 (2010). ArticleCASPubMed Google Scholar
Sertic, S. et al. Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc. Natl Acad. Sci. USA108, 13647–13652 (2011). Shows, together with reference 174, that exonuclease 1 (EXO1)-mediated processing of NER intermediates generates large ssDNA gaps. Demonstrates further that intermediates produced during processing of NER lesions, rather than the lesions themselves, stimulate checkpoint signalling. ArticleCASPubMedPubMed Central Google Scholar
Bergink, S. et al. DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev.20, 1343–1352 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mattiroli, F. et al. RNF168 ubiquitinates K13 15 on H2A/H2AX to drive DNA damage signaling. Cell150, 1182–1195 (2012). ArticleCASPubMed Google Scholar