Adelman, K. & Lis, J. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nature Rev. Genet.13, 720–731 (2012). CASPubMed Google Scholar
Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science339, 950–953 (2013). In this study, pausing was mapped at the genome-wide level with base-pair resolution, showing the dependency of strong promoter-proximal pausing on core promoter elements. CASPubMedPubMed Central Google Scholar
Li, J. & Gilmour, D. Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. EMBO J.32, 1829–1841 (2013). CASPubMedPubMed Central Google Scholar
Weber, C. M., Ramachandran, S. & Henikoff, S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell53, 819–830 (2014). CASPubMed Google Scholar
Peterlin, B. & Price, D. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell23, 297–305 (2006). CASPubMed Google Scholar
Lis, J., Mason, P., Peng, J., Price, D. & Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev.14, 792–803 (2000). CASPubMedPubMed Central Google Scholar
Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife3, e02407 (2014). This study measures elongation rates genome-wide and shows that the half-lives of paused Pol II complexes on 3,181 genes are uniformly long with an average of 7 minutes. PubMedPubMed Central Google Scholar
Danko, C. et al. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol. Cell50, 212–222 (2013). CASPubMedPubMed Central Google Scholar
Alexander, R., Innocente, S., Barrass, J. & Beggs, J. Splicing-dependent RNA polymerase pausing in yeast. Mol. Cell40, 582–593 (2010). CASPubMedPubMed Central Google Scholar
Veloso, A. et al. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res.24, 896–905 (2014). CASPubMedPubMed Central Google Scholar
Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol.15, R69 (2014). PubMedPubMed Central Google Scholar
Saponaro, M. et al. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell157, 1037–1049 (2014). This manuscript documents that RECQL5 slows down transcript elongation and suppresses genome rearrangements at common fragile sites. CASPubMedPubMed Central Google Scholar
Dujardin, G. et al. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell54, 683–690 (2014). CASPubMed Google Scholar
Schor, I., Fiszbein, A., Petrillo, E. & Kornblihtt, A. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation. EMBO J.32, 2264–2274 (2013). CASPubMedPubMed Central Google Scholar
Mata, M. de la et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell12, 525–532 (2003). PubMed Google Scholar
Moehle, E. A., Braberg, H., Krogan, N. J. & Guthrie, C. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate. RNA Biol.11, 313–319 (2014). CASPubMedPubMed Central Google Scholar
Plant, K., Dye, M., Lafaille, C. & Proudfoot, N. Strong polyadenylation and weak pausing combine to cause efficient termination of transcription in the human gamma-globin gene. Mol. Cell. Biol.25, 3276–3285 (2005). CASPubMedPubMed Central Google Scholar
Gromak, N., West, S. & Proudfoot, N. Pause sites promote transcriptional termination of mammalian, RNA polymerase II. Mol. Cell. Biol.26, 3986–3996 (2006). CASPubMedPubMed Central Google Scholar
Skourti-Stathaki, K., Kamieniarz-Gdula, K. & Proudfoot, N. J. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature516, 436–439 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hazelbaker, D., Marquardt, S., Wlotzka, W. & Buratowski, S. Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination. Mol. Cell49, 55–66 (2013). CASPubMed Google Scholar
Sainsbury, S., Bernecky, S. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nature Rev. Mol. Cell. Biol.16, 129–143 (2015). CAS Google Scholar
Porrua, O. & Libri, D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nature Rev. Mol. Cell. Biol.16, 190–202 (2015). CAS Google Scholar
Venkatesh, S. S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nature Rev. Mol. Cell. Biol.16, 178–189 (2015). CAS Google Scholar
Ehrensberger, A. H., Kelly, G. P. & Svejstrup, J. Q. Mechanistic interpretation of promoter-proximal peaks and RNAPII density maps. Cell154, 713–715 (2013). CASPubMed Google Scholar
Venters, B. & Pugh, B. Genomic organization of human transcription initiation complexes. Nature502, 53–58 (2013). CASPubMedPubMed Central Google Scholar
Henriques, T. et al. Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol. Cell52, 517–528 (2013). This study reports that promoter-paused elongation complexes are highly stable, with half-lives of minutes inD. melanogaster. CASPubMed Google Scholar
Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science322, 1845–1848 (2008). CASPubMedPubMed Central Google Scholar
Min, I. M. et al. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev.25, 742–754 (2011). CASPubMedPubMed Central Google Scholar
Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science327, 335–338 (2010). CASPubMed Google Scholar
Gilchrist, D. et al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell143, 540–551 (2010). CASPubMedPubMed Central Google Scholar
Lee, H., Kraus, K., Wolfner, M. & Lis, J. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev.6, 284–295 (1992). CASPubMed Google Scholar
Shopland, L., Hirayoshi, K., Fernandes, M. & Lis, J. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev.9, 2756–2769 (1995). CASPubMed Google Scholar
Kouzine, F. et al. Global regulation of promoter melting in naive lymphocytes. Cell153, 988–999 (2013). This genome-wide analysis of resting lymphocytes identifies promoter melting as a third major rate-limiting step in transcription (following PIC formation and pause release). CASPubMedPubMed Central Google Scholar
Soutoglou, E. & Talianidis, I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science295, 1901–1904 (2002). CASPubMed Google Scholar
Brannan, K. et al. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell46, 311–324 (2012). CASPubMedPubMed Central Google Scholar
Wagschal, A. et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell150, 1147–1157 (2012). CASPubMedPubMed Central Google Scholar
Cheng, B. et al. Functional association of Gdown1 with RNA polymerase II poised on human genes. Mol. Cell45, 38–50 (2012). CASPubMedPubMed Central Google Scholar
Jishage, M. et al. Transcriptional regulation by Pol II(G.) Involving mediator and competitive interactions of Gdown1 and TFIIF with pol II. Mol. Cell45, 51–63 (2012). CASPubMedPubMed Central Google Scholar
Davis, M., Guo, J., Price, D. & Luse, D. Functional interactions of the RNA polymerase II-interacting proteins Gdown1 and TFIIF. J. Biol. Chem.289, 11143–11152 (2014). Google Scholar
Chen, F., Gao, X. & Shilatifard, A. Stably paused genes revealed through inhibition of transcription initiation by the TFIIH inhibitor triptolide. Genes Dev.29, 39–47 (2015). PubMedPubMed Central Google Scholar
Buckley, M. S., Kwak, H., Zipfel, W. R. & Lis, J. T. Kinetics of promoter Pol II on Hsp70 reveal stable pausing and key insights into its regulation. Genes Dev.28, 14–19 (2014). CASPubMedPubMed Central Google Scholar
Saunders, A., Core, L., Sutcliffe, C., Lis, J. & Ashe, H. Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev.27, 1146–1158 (2013). CASPubMedPubMed Central Google Scholar
Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell54, 795–804 (1988). CASPubMed Google Scholar
Guenther, M., Levine, S., Boyer, L., Jaenisch, R. & Young, R. A. Chromatin landmark and transcription initiation at most promoters in human cells. Cell130, 77–88 (2007). CASPubMedPubMed Central Google Scholar
Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet.39, 1512–1516 (2007). CASPubMed Google Scholar
Lagha, M. et al. Paused pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell153, 976–987 (2013). CASPubMedPubMed Central Google Scholar
Kapanidis, A. N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science314, 1144–1147 (2006). PubMedPubMed Central Google Scholar
Pal, M., Ponticelli, A. & Luse, D. The role of the transcription bubble & TFIIB in promoter clearance by RNA polymerase II. Mol. Cell19, 101–110 (2005). CASPubMed Google Scholar
Strobel, E. & Roberts, J. Regulation of promoter-proximal transcription elongation: enhanced DNA scrunching drives λQ antiterminator-dependent escape from a σ70-dependent pause. Nucleic Acids Res.42, 5097–5108 (2014). CASPubMedPubMed Central Google Scholar
Hendrix, D. A., Hong, J.-W. W., Zeitlinger, J., Rokhsar, D. S. & Levine, M. S. Promoter elements associated with RNA pol II stalling in the Drosophila embryo. Proc. Natl Acad. Sci. USA105, 7762–7767 (2008). CASPubMedPubMed Central Google Scholar
Core, L. et al. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nature Genet.46, 1311–1320 (2014). CASPubMed Google Scholar
Li, J. et al. Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol. Cell50, 711–722 (2013). CASPubMedPubMed Central Google Scholar
Hargreaves, D., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell138, 129–145 (2009). CASPubMedPubMed Central Google Scholar
Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nature Rev. Mol. Cell. Biol.16, 144–154 (2015). CAS Google Scholar
Allen, B. L. & Taatjes, D. J. The Mediator complex: a central integrator of transcription. Nature Rev. Mol. Cell. Biol.16, 155–166 (2015). CAS Google Scholar
Takahashi, H. et al. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell146, 92–104 (2011). CASPubMedPubMed Central Google Scholar
Ghavi-Helm, Y. et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature512, 96–100 (2014). CASPubMed Google Scholar
Lee, C. et al. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol. Cell. Biol.28, 3290–3300 (2008). CASPubMedPubMed Central Google Scholar
Farkas, G., Leibovitch, B. & Elgin, S. Chromatin organization and transcriptional control of gene expression in Drosophila. Gene253, 117–136 (2000). CASPubMed Google Scholar
Chopra, V. S. et al. Transcriptional activation by GAGA factor is through its direct interaction with dmTAF3. Dev. Biol.317, 660–670 (2008). CASPubMed Google Scholar
Blau, J. et al. Three functional classes of transcriptional activation domain. Mol. Cell. Biol.16, 2044–2055 (1996). CASPubMedPubMed Central Google Scholar
Krumm, A., Hickey, L. B. & Groudine, M. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev.9, 559–572 (1995). CASPubMed Google Scholar
Bunch, H. et al. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nature Struct. Mol. Biol.21, 876–883 (2014). CAS Google Scholar
Jiang, L. et al. Polo-like kinase 1 inhibits the activity of positive transcription elongation factor of RNA Pol II b (P-TEFb). PloS ONE8, e72289 (2013). CASPubMedPubMed Central Google Scholar
Smith, E., Lin, C. & Shilatifard, A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev.25, 661–672 (2011). CASPubMedPubMed Central Google Scholar
Itzen, F., Greifenberg, A., Bosken, C. & Geyer, M. Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Nucleic Acids Res.42, 7577–7590 (2014). CASPubMedPubMed Central Google Scholar
Jang, M. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell19, 523–534 (2005). CASPubMed Google Scholar
Zou, Z. et al. Brd4 maintains constitutively active NF-κB in cancer cells by binding to acetylated RelA. Oncogene33, 2395–2404 (2014). CASPubMed Google Scholar
Huang, B., Yang, X.-D. D., Zhou, M.-M. M., Ozato, K. & Chen, L.-F. F. Brd4 coactivates transcriptional activation of NF-κB via specific binding to acetylated RelA. Mol. Cell. Biol.29, 1375–1387 (2009). CASPubMed Google Scholar
Luo, Z. et al. The super elongation complex family of RNA polymerase II elongation factors: gene target specificity and transcriptional output. Mol. Cell. Biol.32, 2608–2617 (2012). CASPubMedPubMed Central Google Scholar
Lin, C. et al. Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes Dev.25, 1486–1498 (2011). CASPubMedPubMed Central Google Scholar
Smith, E. et al. The little elongation complex regulates small nuclear RNA transcription. Mol. Cell44, 954–965 (2011). CASPubMedPubMed Central Google Scholar
Lin, C. et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell37, 429–437 (2010). CASPubMedPubMed Central Google Scholar
Luo, Z., Lin, C. & Shilatifard, A. The super elongation complex (SEC) family in transcriptional control. Nature Rev. Mol. Cell. Biol.13, 543–547 (2012). CAS Google Scholar
Gardini, A. et al. Integrator regulates transcriptional initiation and pause release following activation. Mol. Cell56, 128–139 (2014). CASPubMedPubMed Central Google Scholar
Kim, J., Guermah, M. & Roeder, R. G. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell140, 491–503 (2010). CASPubMedPubMed Central Google Scholar
Wier, A., Mayekar, M., Héroux, A., Arndt, K. & VanDemark, A. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc. Natl Acad. Sci. USA110, 17290–17295 (2013). CASPubMedPubMed Central Google Scholar
He, N. et al. Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin. Proc. Natl Acad. Sci. USA108, E636–645 (2011). CASPubMedPubMed Central Google Scholar
Flajollet, S. et al. The elongation complex components BRD4 and MLLT3/AF9 are transcriptional coactivators of nuclear retinoid receptors. PloS ONE8, e64880 (2013). CASPubMedPubMed Central Google Scholar
Diamant, G. & Dikstein, R. Transcriptional control by NF-κB: elongation in focus. Biochim. Biophys. Acta1829, 937–945 (2013). CASPubMed Google Scholar
Nowak, D. et al. RelA Ser276 phosphorylation is required for activation of a subset of NF-κB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol. Cell. Biol.28, 3623–3638 (2008). CASPubMedPubMed Central Google Scholar
Barboric, M., Nissen, R. M., Kanazawa, S., Jabrane-Ferrat, N. & Peterlin, B. M. NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol. Cell8, 327–337 (2001). CASPubMed Google Scholar
Mertz, J. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA108, 16669–16674 (2011). CASPubMedPubMed Central Google Scholar
Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell153, 320–334 (2013). This study shows that exceptionally high levels of the co-activators Mediator and BRD4 are associated with super-enhancers that drive the expression of key oncogenes. PubMedPubMed Central Google Scholar
Delmore, J. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell146, 904–917 (2011). CASPubMedPubMed Central Google Scholar
Oeckinghaus, A., Hayden, M. & Ghosh, S. Crosstalk in NF-κB signaling pathways. Nature Immunol.12, 695–708 (2011). CAS Google Scholar
Fang, L. et al. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. Nucleic Acids Res.42, 8416–8432 (2014). CASPubMedPubMed Central Google Scholar
McNamara, R. P., McCann, J. L., Gudipaty, S. A. & D'Orso, I. Transcription factors mediate the enzymatic disassembly of promoter-bound 7SK snRNP to locally recruit P-TEFb for transcription elongation. Cell Rep.5, 1256–1268 (2013). CASPubMed Google Scholar
Gilchrist, D. et al. Regulating the regulators: the pervasive effects of Pol II pausing on stimulus-responsive gene networks. Genes Dev.26, 933–944 (2012). CASPubMedPubMed Central Google Scholar
Ji, X. et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell153, 855–868 (2013). This study implicates an RNA-binding protein that was traditionally thought to function in splicing in the regulated release of paused Pol II to productive elongation. CASPubMedPubMed Central Google Scholar
Barboric, M. et al. 7SK snRNP/P-TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. Proc. Natl Acad. Sci. USA106, 7798–7803 (2009). CASPubMedPubMed Central Google Scholar
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell155, 934–947 (2013). CASPubMed Google Scholar
Whyte, W. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell153, 307–319 (2013). CASPubMedPubMed Central Google Scholar
Brown, J. D. et al. NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol. Cell56, 219–231 (2014). CASPubMedPubMed Central Google Scholar
Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature494, 497–501 (2013). CASPubMedPubMed Central Google Scholar
Yamaguchi, Y., Inukai, N., Narita, T., Wada, T. & Handa, H. Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase, II complex and RNA. Mol. Cell. Biol.22, 2918–2927 (2002). CASPubMedPubMed Central Google Scholar
Schaukowitch, K. et al. Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell56, 29–42 (2014). CASPubMedPubMed Central Google Scholar
Schaaf, C. A. et al. Genome-wide control of RNA polymerase II activity by cohesin. PLoS Genet.9, e1003382 (2013). CASPubMedPubMed Central Google Scholar
Thummel, C. S., Burtis, K. C. & Hogness, D. S. Spatial and temporal patterns of E74 transcription during Drosophila development. Cell61, 101–111 (1990). CASPubMed Google Scholar
Heidemann, M., Hintermair, C., Voß, K. & Eick, D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim. Biophys. Acta1829, 55–62 (2013). CASPubMed Google Scholar
Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nature Struct. Mol. Biol.15, 71–78 (2007). Google Scholar
Martin, R., Rino, J., Carvalho, C., Kirchhausen, T. & Carmo-Fonseca, M. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep.4, 1144–1155 (2013). CASPubMedPubMed Central Google Scholar
Zentner, G. & Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nature Struct. Mol. Biol.20, 259–266 (2013). CAS Google Scholar
Bintu, L. et al. Nucleosomal elements that control the topography of the barrier to transcription. Cell151, 738–749 (2012). In this study, optical tweezers were used to measure the movement of individual transcribing Pol II complexes through nucleosomes in real-time and thereby describes the energetic barriers in nucleosomes that could contribute to pausing. CASPubMedPubMed Central Google Scholar
Ardehali, M. B. et al. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J.28, 1067–1077 (2009). CASPubMedPubMed Central Google Scholar
Wu, L., Li, L., Zhou, B., Qin, Z. & Dou, Y. H2B ubiquitylation promotes RNA pol II processivity via PAF1 and pTEFb. Mol. Cell54, 920–931 (2014). CASPubMedPubMed Central Google Scholar
Jung, I. et al. H2B monoubiquitylation is a 5′-enriched active transcription mark and correlates with exon-intron structure in human cells. Genome Res.22, 1026–1035 (2012). CASPubMedPubMed Central Google Scholar
Shilatifard, A., Conaway, R. C. & Conaway, J. W. The RNA polymerase II elongation complex. Annu. Rev. Biochem.72, 693–715 (2003). CASPubMed Google Scholar
Amit, M. et al. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition. Cell Rep.1, 543–556 (2012). CASPubMed Google Scholar
Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nature Struct. Mol. Biol.16, 996–1001 (2009). CAS Google Scholar
Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nature Struct. Mol. Biol.16, 990–995 (2009). CAS Google Scholar
Close, P. et al. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation. Nature484, 386–389 (2012). CASPubMedPubMed Central Google Scholar
Huff, J., Plocik, A., Guthrie, C. & Yamamoto, K. Reciprocal intronic and exonic histone modification regions in humans. Nature Struct. Mol. Biol.17, 1495–1499 (2010). CAS Google Scholar
Saint-André, V., Batsché, E., Rachez, C. & Muchardt, C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nature Struct. Mol. Biol.18, 337–344 (2011). Google Scholar
Schor, I. E., Rascovan, N., Pelisch, F., Alló, M. & Kornblihtt, A. R. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl Acad. Sci. USA106, 4325–4330 (2009). CASPubMedPubMed Central Google Scholar
Ip, J. et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res.21, 390–401 (2011). CASPubMedPubMed Central Google Scholar
Hein, P. P. et al. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nature Struct. Mol. Biol.21, 794–802 (2014). CAS Google Scholar
Skourti-Stathaki, K., Proudfoot, N. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2- dependent termination. Mol. Cell42, 794–805 (2011). CASPubMedPubMed Central Google Scholar
Ozer, A., Pagano, J. M. & Lis, J. T. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Mol. Ther. Nucleic Acids3, e183 (2014). CASPubMedPubMed Central Google Scholar
Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell152, 1237–1251 (2013). CASPubMedPubMed Central Google Scholar
Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature478, 524–528 (2011). CASPubMedPubMed Central Google Scholar
Dawson, M. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature478, 529–533 (2011). CASPubMedPubMed Central Google Scholar
Singh, J. & Padgett, R. Rates of in situ transcription and splicing in large human genes. Nature Struct. Mol. Biol.16, 1128–1133 (2009). CAS Google Scholar
Churchman, L. & Weissman, J. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature469, 368–373 (2011). CASPubMed Google Scholar
Yao, J., Munson, K., Webb, W. & Lis, J. Dynamics of heat shock factor association with native gene loci in living cells. Nature442, 1050–1053 (2006). CASPubMed Google Scholar
Boireau, S. et al. The transcriptional cycle of HIV-1 in real-time and live cells. J. Cell Biol.179, 291–304 (2007). CASPubMedPubMed Central Google Scholar
Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol.9, e1000573 (2011). CASPubMedPubMed Central Google Scholar
Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nature Struct. Mol. Biol.14, 796–806 (2007). CAS Google Scholar
Tennyson, C. N., Klamut, H. J. & Worton, R. G. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nature Genet.9, 184–190 (1995). CASPubMed Google Scholar
Mason, P. & Struhl, K. Distinction & relationship between elongation rate & processivity of RNA polymerase II in vivo. Mol. Cell17, 831–840 (2005). CASPubMed Google Scholar
Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nature Struct. Mol. Biol.18, 1435–1440 (2011). CAS Google Scholar