The biology and future prospects of antivirulence therapies (original) (raw)
Alekshun, M. N. & Levy, S. B. Molecular mechanisms of antibacterial multidrug resistance. Cell128, 1037–1050 (2007). ArticleCASPubMed Google Scholar
Livermore, D. M. Minimising antibiotic resistance. Lancet Infect. Dis.5, 450–459 (2005). ArticlePubMed Google Scholar
Palumbi, S. R. Humans as the world's greatest evolutionary force. Science293, 1786–1790 (2001). ArticleCASPubMed Google Scholar
Vicente, M. et al. The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time? FEMS Microbiol. Rev.30, 841–852 (2006). ArticleCASPubMed Google Scholar
Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med.10, S122–S129 (2004). ArticleCASPubMed Google Scholar
Crowley, P. J. & Martini, L. G. Formulation design: new drugs from old. Drug Discov. Today: Therapeutic Strategies1, 537–542 (2004). CAS Google Scholar
Projan, S. J. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol.6, 427–430 (2003). ArticlePubMed Google Scholar
Fernandes, P. Antibacterial discovery and development — the failure of success? Nature Biotechnol.24, 1497–1503 (2006). ArticleCAS Google Scholar
Talbot, G. H. et al. Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of America. Clin. Infect. Dis.42, 657–668 (2006). ArticlePubMed Google Scholar
Blount, K. F., Wang, J. X., Lim, J., Sudarsan, N. & Breaker, R. R. Antibacterial lysine analogs that target lysine riboswitches. Nature Chem. Biol.3, 44–49 (2007). Identified lysine analogues that bind to lysine riboswitchesin vitroand inhibit the growth ofBacillus subtilis. Also discusses the general importance of riboswitches and their suitability as antibacterial drug targets. ArticleCAS Google Scholar
Wright, G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Rev. Microbiol.5, 175–186 (2007). ArticleCAS Google Scholar
Mwangi, M. M. et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl Acad. Sci. USA104, 9451–9456 (2007). ArticleCASPubMedPubMed Central Google Scholar
Finlay, B. B. & Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev.61, 136–169 (1997). CASPubMedPubMed Central Google Scholar
Lee, Y. M., Almqvist, F. & Hultgren, S. J. Targeting virulence for antimicrobial chemotherapy. Curr. Opin. Pharmacol.3, 513–519 (2003). ArticleCASPubMed Google Scholar
Marra, A. Can virulence factors be viable antibacterial targets? Expert Rev. Anti. Infect. Ther.2, 61–72 (2004). ArticleCASPubMed Google Scholar
Savage, D. C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol.31, 107–133 (1977). ArticleCASPubMed Google Scholar
Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA101, 15718–15723 (2004). ArticleCASPubMedPubMed Central Google Scholar
Miller, J. F., Mekalanos, J. J. & Falkow, S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science243, 916–922 (1989). A perspective that emphasizes the need to understand coordinate regulation and sensory transduction to understand the events that occur during the pathogenesis of infectious disease. ArticleCASPubMed Google Scholar
Virgin, H. W. In vivo veritas: pathogenesis of infection as it actually happens. Nature Immunol.8, 1143–1147 (2007). An overview and perspective of the benefits that are ascribed to bridging the disciplines of microbiology and immunology, including lessons from Heisenberg. ArticleCAS Google Scholar
Moxon, E. R., Rainey, P. B., Nowak, M. A. & Lenski, R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol.4, 24–33 (1994). ArticleCASPubMed Google Scholar
Monack, D. M., Mueller, A. & Falkow, S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Rev. Microbiol.2, 747–765 (2004). Review and consideration of the dynamic cross-talk at the host–pathogen interface and the delicate balance between protective immunity and immunopathology. ArticleCAS Google Scholar
Kaufmann, S. H. E. The contribution of immunology to the rational design of novel antibacterial vaccines. Nature Rev. Microbiol.5, 491–504 (2007). ArticleCAS Google Scholar
Kokai-Kun, J. F. & Mond, J. J. Antibody therapy for treatment or prevention of infectious diseases. Drug Discov. Today: Therapeutic Strategies1, 475–481 (2004). CAS Google Scholar
Hung, D. L. & Hultgren, S. J. Pilus biogenesis via the chaperone/usher pathway: an integration of structure and function. J. Struct. Biol.124, 201–220 (1998). ArticleCASPubMed Google Scholar
Telford, J. L., Barocchi, M. le A., Margarit, I., Rappuoli, R. & Grandi, G. Pili in Gram-positive pathogens. Nature Rev. Microbiol.4, 509–519 (2006). ArticleCAS Google Scholar
Barocchi, M. A. et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl Acad. Sci. USA103, 2857–2862 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mulvey, M. A. Adhesion and entry of uropathogenic Escherichia coli. Cell. Microbiol.4, 257–271 (2002). ArticleCASPubMed Google Scholar
Garofalo, C. K. et al. Escherichia coli from urine of female patients with urinary tract infections is competent for intracellular bacterial community formation. Infect. Immun.75, 52–60 (2007). ArticleCASPubMed Google Scholar
Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S. & Hultgren, S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J.19, 2803–2812 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sauer, F. G., Mulvey, M. A., Schilling, J. D., Martinez, J. J. & Hultgren, S. J. Bacterial pili: molecular mechanisms of pathogenesis. Curr. Opin. Microbiol.3, 65–72 (2000). ArticleCASPubMed Google Scholar
Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science301, 105–107 (2003). ArticleCASPubMed Google Scholar
Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA101, 1333–1338 (2004). Revealed the multi-stepE. colipathogenic cascade using time-lapse fluorescence videomicroscopy to observe infected mouse-bladder explants. ArticleCASPubMedPubMed Central Google Scholar
Rosen Da, H. T., Stamm W. E., Humphrey, P. A. & Hultgren, S. J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. (in the press).
Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science282, 1494–1497 (1998). ArticleCASPubMed Google Scholar
Mysorekar, I. U. & Hultgren, S. J. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA103, 14170–14175 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wright, K. J., Seed, P. C. & Hultgren, S. J. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell. Microbiol.9, 2230–2241 (2007). ArticleCASPubMed Google Scholar
Kihlberg, J. & Magnusson, G. Use of carbohydrates and peptides in studies of adhesion of pathogenic bacteria and in efforts to generate carbohydrate-specific T cells. Pure Appl. Chem.68, 2119–2128 (1996). ArticleCAS Google Scholar
Firon, N., Ashkenazi, S., Mirelman, D., Ofek, I. & Sharon, N. Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun.55, 472–476 (1987). CASPubMedPubMed Central Google Scholar
Bouckaert, J. et al. Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol. Microbiol.55, 441–455 (2005). ArticleCASPubMed Google Scholar
Sauer, F. G., Remaut, H., Hultgren, S. J. & Waksman, G. Fiber assembly by the chaperone–usher pathway. Biochim. Biophys. Acta1694, 259–267 (2004). ArticleCASPubMed Google Scholar
Chen, S. L. et al. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc. Natl Acad. Sci. USA103, 5977–5982 (2006). ArticleCASPubMedPubMed Central Google Scholar
Svensson, A. et al. Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli. Chembiochem2, 915–918 (2001). ArticleCASPubMed Google Scholar
Larsson, A. et al. Multivariate design, synthesis, and biological evaluation of peptide inhibitors of FimC/FimH protein–protein interactions in uropathogenic Escherichia coli. J. Med. Chem.48, 935–945 (2005). ArticleCASPubMed Google Scholar
Pinkner, J. S. et al. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc. Natl Acad. Sci. USA103, 17897–17902 (2006). ArticleCASPubMedPubMed Central Google Scholar
Report No. 04–5512, 153–183 (US Government Printing Office, Washington DC, 2004).
Report No. 04–5512, 187–209 (US Government Printing Office, Washington DC, 2004).
Ronald, A. R. et al. Urinary tract infection in adults: research priorities and strategies. Int. J. Antimicrob. Agents17, 343–348 (2001). ArticleCASPubMed Google Scholar
Acharya, V. N. Urinary tract infection — a dangerous and unrecognised forerunner of systemic sepsis. J. Postgrad. Med.38, 52–54 (1992). CASPubMed Google Scholar
Spangler, B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev.56, 622–647 (1992). CASPubMedPubMed Central Google Scholar
Hung, D. T., Shakhnovich, E. A., Pierson, E. & Mekalanos, J. J. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science310, 670–674 (2005). ArticleCASPubMed Google Scholar
Keller, M. A. & Stiehm, E. R. Passive immunity in prevention and treatment of infectious diseases. Clin. Microbiol. Rev.13, 602–614 (2000). ArticleCASPubMedPubMed Central Google Scholar
Arnon, S. S., Schechter, R., Maslanka, S. E., Jewell, N. P. & Hatheway, C. L. Human botulism immune globulin for the treatment of infant botulism. N. Engl. J. Med.354, 462–471 (2006). ArticleCASPubMed Google Scholar
Young, J. A. & Collier, R. J. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem.76, 243–265 (2007). Describes the structural basis and molecular mechanisms of the anthrax toxin and provides insight into toxin function. ArticleCASPubMed Google Scholar
Saenz, J. B., Doggett, T. A. & Haslam, D. B. Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect. Immun.75, 4552–4561 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhao, L. & Haslam, D. B. A quantitative and highly sensitive luciferase-based assay for bacterial toxins that inhibit protein synthesis. J. Med. Microbiol.54, 1023–1030 (2005). ArticleCASPubMed Google Scholar
Tonello, F., Seveso, M., Marin, O., Mock, M. & Montecucco, C. Screening inhibitors of anthrax lethal factor. Nature418, 386 (2002). ArticleCASPubMed Google Scholar
Panchal, R. G. et al. Identification of small molecule inhibitors of anthrax lethal factor. Nature Struct. Mol. Biol.11, 67–72 (2004). ArticleCAS Google Scholar
Turk, B. E. et al. The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nature Struct. Mol. Biol.11, 60–66 (2004). ArticleCAS Google Scholar
Russell, P. K. Project BioShield: what it is, why it is needed, and its accomplishments so far. Clin. Infect. Dis.45, S68–S72 (2007). ArticlePubMed Google Scholar
US Securities and Exchange Commission (SEC). Pharmathene, Inc. Form 10-Q, Quarter Ended September 30, Commission File Number 001-32587. SEC web site [online], (2007).
Food and Drug Administration Center for Drug Evaluation and Research. Summary Minutes of the Anti-Infective Drugs Advisory Committee on April 12, 2007 [online], (2007).
Gyles, C. L. Shiga toxin-producing Escherichia coli: an overview. J. Anim. Sci.85, E45–E62 (2007). ArticleCASPubMed Google Scholar
Sandkvist, M. et al. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol.179, 6994–7003 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol.4, 811–825 (2006). ArticleCAS Google Scholar
Cornelis, G. R. & Wolf-Watz, H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol.23, 861–867 (1997). ArticleCASPubMed Google Scholar
Cornelis, G. R. & Van Gijsegem, F. Assembly and function of type III secretory systems. Annu. Rev. Microbiol.54, 735–774 (2000). ArticleCASPubMed Google Scholar
Rosqvist, R., Hakansson, S., Forsberg, A. & Wolf-Watz, H. Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. EMBO J.14, 4187–4195 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kauppi, A. M., Nordfelth, R., Uvell, H., Wolf-Watz, H. & Elofsson, M. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem. Biol.10, 241–249 (2003). ArticleCASPubMed Google Scholar
Nordfelth, R., Kauppi, A. M., Norberg, H. A., Wolf-Watz, H. & Elofsson, M. Small-molecule inhibitors specifically targeting type III secretion. Infect. Immun.73, 3104–3114 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wolf, K. et al. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol. Microbiol.61, 1543–1555 (2006). ArticleCASPubMedPubMed Central Google Scholar
Muschiol, S. et al. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA103, 14566–14571 (2006). An elegant application of chemical genetics to microbial pathogenesis. A small molecule that was identified as a T3SS inhibitor inYersiniaspp. inhibited virulence ofC. trachomatis, which supports the notion that the T3SS is important inC. trachomatispathogenesis. ArticleCASPubMedPubMed Central Google Scholar
Bailey, L. et al. Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett.581, 587–595 (2007). ArticleCASPubMed Google Scholar
Saye, D. E. Recurring and antimicrobial-resistant infections: considering the potential role of biofilms in clinical practice. Ostomy Wound Manage.53, 46–62 (2007). PubMed Google Scholar
Hall-Stoodley, L. et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA296, 202–211 (2006). ArticleCASPubMedPubMed Central Google Scholar
Carron, M. A., Tran, V. R., Sugawa, C. & Coticchia, J. M. Identification of Helicobacter pylori biofilms in human gastric mucosa. J. Gastrointest. Surg.10, 712–717 (2006). ArticlePubMed Google Scholar
Lam, J., Chan, R., Lam, K. & Costerton, J. W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun.28, 546–556 (1980). CASPubMedPubMed Central Google Scholar
Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature407, 762–764 (2000). ArticleCASPubMed Google Scholar
Benghezal, M. et al. Inhibitors of bacterial virulence identified in a surrogate host model. Cell. Microbiol.9, 1336–1342 (2007). ArticleCASPubMed Google Scholar
Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol.4, 249–258 (2006). A holistic perspective of the potential roles of QS signals, from a cooperative to the battleground. ArticleCAS Google Scholar
Bassler, B. L. & Losick, R. Bacterially speaking. Cell125, 237–246 (2006). A creative composition and a lively review of the business of bacterial communication. ArticleCASPubMed Google Scholar
Kjelleberg, S. et al. Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol.13, 85–93 (1997). Article Google Scholar
Manefield, M. et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein [in process citation]. Microbiology145, 283–291 (1999). ArticleCASPubMed Google Scholar
Higgins, D. A. et al. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 14 Nov 2007 (doi:10.1038/nature06284). ArticleCASPubMed Google Scholar
Bjarnsholt, T. & Givskov, M. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Phil. Trans. R. Soc. Lond. B362, 1213–1222 (2007). ArticleCAS Google Scholar
Geske, G. D., O'Neill, J. C. & Blackwell, H. E. _N_-phenylacetanoyl-L-homoserine lactones can strongly antagonize or superagonize quorum sensing in Vibrio fischeri. ACS Chem. Biol.2, 315–319 (2007). Identified a non-nativeN-acylated-L-homoserine lactone that can either inhibit or strongly induce QS in the marine symbiontV. fischeri, depending on the molecule concentration. ArticleCASPubMedPubMed Central Google Scholar
Miller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K. & Bassler, B. L. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell110, 303–314 (2002). Revealed the redundant QS capacity inV. choleraeand discusses implications in terms ofV. cholerae pathogenicity. ArticleCASPubMed Google Scholar
Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol.5, 1024–1037 (2004). ArticleCAS Google Scholar
Galperin, M. Y. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol.188, 4169–4182 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ulrich, L. E. & Zhulin, I. B. MiST: a microbial signal transduction database. Nucleic Acids Res.35, D386–D390 (2007). ArticleCASPubMed Google Scholar
Mascher, T., Helmann, J. D. & Unden, G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev.70, 910–938 (2006). ArticleCASPubMedPubMed Central Google Scholar
Barrett, J. F. & Hoch, J. A. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother.42, 1529–1536 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mayville, P. et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl Acad. Sci. USA96, 1218–1223 (1999). ArticleCASPubMedPubMed Central Google Scholar
Otto, M. Quorum-sensing control in Staphylococci — a target for antimicrobial drug therapy? FEMS Microbiol. Lett.241, 135–141 (2004). ArticleCASPubMed Google Scholar
Arthur, M., Molinas, C. & Courvalin, P. The VanS–VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol.174, 2582–2591 (1992). ArticleCASPubMedPubMed Central Google Scholar
Evers, S. & Courvalin, P. Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)–VanR (B) two-component regulatory system in Enterococcus faecalis V583. J. Bacteriol.178, 1302–1309 (1996). ArticleCASPubMedPubMed Central Google Scholar
Sintchenko, V., Iredell, J. R. & Gilbert, G. L. Pathogen profiling for disease management and surveillance. Nature Rev. Microbiol.5, 464–470 (2007). ArticleCAS Google Scholar
Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov.6, 29–40 (2007). ArticleCAS Google Scholar
Jones, C. H. et al. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl Acad. Sci. USA92, 2081–2085 (1995). ArticleCASPubMedPubMed Central Google Scholar