The type III secretion injectisome (original) (raw)
Cornelis, G. R. & Wolf-Watz, H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol.23, 861–867 (1997). CASPubMed Google Scholar
Galan, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science284, 1322–1328 (1999). CASPubMed Google Scholar
Cornelis, G. R. & Van Gijsegem, F. Assembly and function of type III secretory systems. Annu. Rev. Microbiol.54, 735–774 (2000). CASPubMed Google Scholar
Mota, L. J. & Cornelis, G. R. The bacterial injection kit: type III secretion systems. Ann. Med.37, 234–249 (2005). CASPubMed Google Scholar
Alfano, J. R. & Collmer, A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol.42, 385–414 (2004). CASPubMed Google Scholar
Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M. & Dangl, J. L. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 5 June 2006 [epub ahead of print].
Yip, C. K. & Strynadka, N. C. New structural insights into the bacterial type III secretion system. Trends Biochem. Sci.31, 223–230 (2006). CASPubMed Google Scholar
Van Gijsegem, F. et al. The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Mol. Microbiol.15, 1095–1114 (1995). CASPubMed Google Scholar
Fields, K. A., Plano, G. V. & Straley, S. C. A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J. Bacteriol.176, 569–579 (1994). CASPubMedPubMed Central Google Scholar
Woestyn, S., Allaoui, A., Wattiau, P. & Cornelis, G. R. YscN, the putative energizer of the Yersinia Yop secretion machinery. J. Bacteriol.176, 1561–1569 (1994). CASPubMedPubMed Central Google Scholar
Macnab, R. M. How bacteria assemble flagella. Annu. Rev. Microbiol.57, 77–100 (2003). CASPubMed Google Scholar
Young, G. M., Schmiel, D. H. & Miller, V. L. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl Acad. Sci. USA96, 6456–6461 (1999). CASPubMedPubMed Central Google Scholar
Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science280, 602–605 (1998). CASPubMed Google Scholar
Gophna, U., Ron, E. Z. & Graur, D. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene312, 151–163 (2003). CASPubMed Google Scholar
Pallen, M. J., Beatson, S. A. & Bailey, C. M. Bioinformatics, genomics and evolution of non-flagellar type III secretion systems: a Darwinian perspective. FEMS Microbiol. Rev.29, 201–229 (2005). CASPubMed Google Scholar
Troisfontaines, P. & Cornelis, G. R. Type III secretion: more systems than you think. Physiology (Bethesda)20, 326–339 (2005). CAS Google Scholar
Roy-Burman, A. et al. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J. Infect. Dis.183, 1767–1774 (2001). CASPubMed Google Scholar
Burr, S. E., Wahli, T., Segner, H., Pugovkin, D. & Frey, J. Association of type III secretion genes with virulence of Aeromonas salmonicida subsp. salmonicida. Dis. Aquat. Organ.57, 167–171 (2003). CASPubMed Google Scholar
Zhou, D. & Galan, J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect.3, 1293–1298 (2001). CASPubMed Google Scholar
Waterman, S. R. & Holden, D. W. Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol.5, 501–511 (2003). CASPubMed Google Scholar
Sekiya, K. et al. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl Acad. Sci. USA98, 11638–11643 (2001). CASPubMedPubMed Central Google Scholar
Tamano, K. et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J.19, 3876–3887 (2000). CASPubMedPubMed Central Google Scholar
Blocker, A. et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol.147, 683–693. (1999). CASPubMedPubMed Central Google Scholar
Kimbrough, T. G. & Miller, S. I. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl Acad. Sci. USA97, 11008–11013 (2000). CASPubMedPubMed Central Google Scholar
Daniell, S. J. et al. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol.3, 865–871 (2001). CASPubMed Google Scholar
Ogino, T. et al. Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli. J. Bacteriol.188, 2801–2811 (2006). CASPubMedPubMed Central Google Scholar
Morita-Ishihara, T. et al. Shigella Spa33 is an essential C-ring component of type III secretion machinery. J. Biol. Chem.281, 599–607 (2006). CASPubMed Google Scholar
Blocker, A. et al. Structure and composition of the Shigella flexneri 'needle complex', a part of its type III secreton. Mol. Microbiol.39, 652–663 (2001). CASPubMed Google Scholar
Feldman, M. F., Muller, S., Wuest, E. & Cornelis, G. R. SycE allows secretion of YopE-DHFR hybrids by the Yersinia enterocolitica type III Ysc system. Mol. Microbiol.46, 1183–1197 (2002). CASPubMed Google Scholar
Marlovits, T. C. et al. Structural insights into the assembly of the type III secretion needle complex. Science306, 1040–1042 (2004). CASPubMedPubMed Central Google Scholar
Young, H. S., Dang, H., Lai, Y., DeRosier, D. J. & Khan, S. Variable symmetry in Salmonella typhimurium flagellar motors. Biophys. J.84, 571–577 (2003). CASPubMedPubMed Central Google Scholar
Bogdanove, A. J. et al. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol.20, 681–683 (1996). CASPubMed Google Scholar
Kubori, T., Sukhan, A., Aizawa, S. I. & Galan, J. E. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl Acad. Sci. USA97, 10225–10230 (2000). CASPubMedPubMed Central Google Scholar
Koster, M. et al. The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol. Microbiol.26, 789–797 (1997). CASPubMed Google Scholar
Burghout, P. et al. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocoliticaJ. Bacteriol.186, 4645–4654 (2004). CASPubMedPubMed Central Google Scholar
Chami, M. et al. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem.280, 37732–37741 (2005). CASPubMed Google Scholar
Collins, R. F. et al. Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 A resolution. J. Biol. Chem.279, 39750–39756 (2004). CASPubMed Google Scholar
Russel, M. Phage assembly: a paradigm for bacterial virulence factor export? Science265, 612–614 (1994). CASPubMed Google Scholar
Burghout, P. et al. Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J. Bacteriol.186, 5366–5375 (2004). CASPubMedPubMed Central Google Scholar
Daefler, S. & Russel, M. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol. Microbiol.28, 1367–1380 (1998). CASPubMed Google Scholar
Crago, A. M. & Koronakis, V. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol. Microbiol.30, 47–56 (1998). CASPubMed Google Scholar
Crepin, V. F. et al. Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ. Mol. Microbiol.55, 1658–1670 (2005). CASPubMed Google Scholar
Yip, C. K. et al. Structural characterization of the molecular platform for type III secretion system assembly. Nature435, 702–707 (2005). CASPubMed Google Scholar
Sukhan, A., Kubori, T. & Galan, J. E. Synthesis and localization of the Salmonella SPI-1 type III secretion needle complex proteins PrgI and PrgJ. J. Bacteriol.185, 3480–3483 (2003). CASPubMedPubMed Central Google Scholar
Fadouloglou, V. E. et al. Structure of HrcQB-C, a conserved component of the bacterial type III secretion systems. Proc. Natl Acad. Sci. USA101, 70–75 (2004). CASPubMed Google Scholar
Gonzalez-Pedrajo, B., Fraser, G. M., Minamino, T. & Macnab, R. M. Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol. Microbiol.45, 967–982 (2002). CASPubMed Google Scholar
Jackson, M. W. & Plano, G. V. Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol. Lett.186, 85–90 (2000). CASPubMed Google Scholar
Blaylock, B., Riordan, K. E., Missiakas, D. M. & Schneewind, O. Characterization of the Yersinia enterocolitica type III secretion ATPase YscN and its regulator, YscL. J. Bacteriol.188, 3525–3534 (2006). CASPubMedPubMed Central Google Scholar
Jouihri, N. et al. MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri. Mol. Microbiol.49, 755–767 (2003). CASPubMed Google Scholar
Minamino, T. & MacNab, R. M. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol. Microbiol.35, 1052–1064 (2000). CASPubMed Google Scholar
Pozidis, C. et al. Type III protein translocase: HrcN is a peripheral ATPase that is activated by oligomerization. J. Biol. Chem.278, 25816–25824 (2003). CASPubMed Google Scholar
Muller, S. A. et al. Double hexameric ring assembly of the type III protein translocase ATPase HrcN. Mol. Microbiol.61, 119–125 (2006). CASPubMed Google Scholar
Claret, L., Calder, S. R., Higgins, M. & Hughes, C. Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol. Microbiol.48, 1349–1355 (2003). CASPubMedPubMed Central Google Scholar
Akeda, Y. & Galan, J. E. Chaperone release and unfolding of substrates in type III secretion. Nature437, 911–915 (2005). CASPubMed Google Scholar
Hoiczyk, E. & Blobel, G. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl Acad. Sci. USA98, 4669–4674 (2001). CASPubMedPubMed Central Google Scholar
Cordes, F. S. et al. Helical structure of the needle of the type III secretion system of Shigella flexneri. J Biol Chem278, 17103–7 (2003). CASPubMed Google Scholar
Deane, J. E. et al. Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc. Natl Acad. Sci. USA (2006).
Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature424, 643–650 (2003). CASPubMed Google Scholar
Mueller, C. A. et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science310, 674–676 (2005). CASPubMed Google Scholar
Derewenda, U. et al. The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure (Camb)12, 301–306 (2004). CAS Google Scholar
Jin, Q. & He, S. Y. Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science294, 2556–2558 (2001). CASPubMed Google Scholar
Hakansson, S., Galyov, E. E., Rosqvist, R. & Wolf-Watz, H. The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Mol. Microbiol.20, 593–603. (1996). CASPubMed Google Scholar
Neyt, C. & Cornelis, G. R. Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol. Microbiol.33, 971–981 (1999). CASPubMed Google Scholar
Rosqvist, R., Magnusson, K. E. & Wolf-Watz, H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J.13, 964–972 (1994). CASPubMedPubMed Central Google Scholar
Sory, M. P. & Cornelis, G. R. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol.14, 583–594 (1994). CASPubMed Google Scholar
Pettersson, J. et al. The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol. Microbiol.32, 961–976 (1999). CASPubMed Google Scholar
Boland, A. et al. Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y. enterocolitica is internalized inside the cytosol of PU5–1. 8 macrophages by the YopB, D, N delivery apparatus. EMBO J.15, 5191–5201 (1996). CASPubMedPubMed Central Google Scholar
Sarker, M. R., Neyt, C., Stainier, I. & Cornelis, G. R. The Yersinia Yop virulon: LcrV is required for extrusion of the translocators YopB and YopD. J. Bacteriol.180, 1207–1214 (1998). CASPubMedPubMed Central Google Scholar
Menard, R., Sansonetti, P., Parsot, C. & Vasselon, T. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell79, 515–525 (1994). CASPubMed Google Scholar
Harrington, A. et al. Characterization of the interaction of single tryptophan containing mutants of IpaC from Shigella flexneri with phospholipid membranes. Biochemistry45, 626–636 (2006). CASPubMed Google Scholar
Hume, P. J., McGhie, E. J., Hayward, R. D. & Koronakis, V. The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Mol. Microbiol.49, 425–439 (2003). CASPubMed Google Scholar
Schoehn, G. et al. Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J.22, 4957–4967 (2003). CASPubMedPubMed Central Google Scholar
Faudry, E., Vernier, G., Neumann, E., Forge, V. & Attree, I. Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa. Biochemistry45, 8117–8123 (2006). CASPubMed Google Scholar
Fields, K. A., Nilles, M. L., Cowan, C. & Straley, S. C. Virulence role of V antigen of Yersinia pestis at the bacterial surface. Infect. Immun.67, 5395–5408 (1999). CASPubMedPubMed Central Google Scholar
Marenne, M. N., Journet, L., Mota, L. J. & Cornelis, G. R. Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV, yscF and YopN. Microb. Pathogen.35, 243–258 (2003). CAS Google Scholar
Hakansson, S. et al. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J.15, 5812–5823. (1996). CASPubMedPubMed Central Google Scholar
Goure, J. et al. The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect. Immun.72, 4741–4750 (2004). CASPubMedPubMed Central Google Scholar
Goure, J., Broz, P., Attree, O., Cornelis, G. R. & Attree, I. Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J. Infect. Dis.192, 218–225 (2005). CASPubMed Google Scholar
Picking, W. L. et al. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect. Immun.73, 1432–1440 (2005). CASPubMedPubMed Central Google Scholar
Espina, M. et al. IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect. Immun.74, 4391–4400 (2006). CASPubMedPubMed Central Google Scholar
Warawa, J., Finlay, B. B. & Kenny, B. Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect. Immun.67, 5538–5540 (1999). CASPubMedPubMed Central Google Scholar
Yonekura, K. et al. The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science290, 2148–2152 (2000). CASPubMed Google Scholar
Li, C. M. et al. The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J.21, 1909–1915 (2002). CASPubMedPubMed Central Google Scholar
Crepin, V. F., Shaw, R., Abe, C. M., Knutton, S. & Frankel, G. Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J. Bacteriol.187, 2881–2889 (2005). CASPubMedPubMed Central Google Scholar
Marlovits, T. C. et al. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature441, 637–640 (2006). CASPubMed Google Scholar
Ikeda, T., Asakura, S. & Kamiya, R. 'Cap' on the tip of Salmonella flagella. J. Mol. Biol.184, 735–737 (1985). CASPubMed Google Scholar
Quinaud, M. et al. The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. J. Biol. Chem.280, 36293–36300 (2005). CASPubMed Google Scholar
Journet, L., Agrain, C., Broz, P. & Cornelis, G. R. The needle length of bacterial injectisomes is determined by a molecular ruler. Science302, 1757–1760 (2003). CASPubMed Google Scholar
Williams, A. W. et al. Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J. Bacteriol.178, 2960–2970 (1996). CASPubMedPubMed Central Google Scholar
Magdalena, J. et al. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J. Bacteriol.184, 3433–3441 (2002). CASPubMedPubMed Central Google Scholar
Makishima, S., Komoriya, K., Yamaguchi, S. & Aizawa, S. I. Length of the flagellar hook and the capacity of the type III export apparatus. Science291, 2411–2413 (2001). CASPubMed Google Scholar
Agrain, C. et al. Characterization of a type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica. Mol. Microbiol.56, 54–67 (2005). CASPubMed Google Scholar
Agrain, C., Sorg, I., Paroz, C. & Cornelis, G. R. Secretion of YscP from Yersinia enterocolitica is essential to control the length of the injectisome needle but not to change the type III secretion substrate specificity. Mol. Microbiol.57, 1415–1427 (2005). CASPubMed Google Scholar
Creighton, T. E. Proteins: structures and molecular properties 2nd edn (W. H. Freeman, New York, 1992). Google Scholar
Kutsukake, K., Minamino, T. & Yokoseki, T. Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J. Bacteriol.176, 7625–7629 (1994). CASPubMedPubMed Central Google Scholar
Hirano, T., Yamaguchi, S., Oosawa, K. & Aizawa, S. Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J. Bacteriol.176, 5439–5449 (1994). CASPubMedPubMed Central Google Scholar
Edqvist, P. J. et al. YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J. Bacteriol.185, 2259–2266 (2003). CASPubMedPubMed Central Google Scholar
Minamino, T. et al. Domain organization and function of Salmonella FliK, a flagellar hook-length control protein. J. Mol. Biol.341, 491–502 (2004). CASPubMed Google Scholar
Minamino, T. & Macnab, R. M. Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J. Bacteriol.182, 4906–4914 (2000). CASPubMedPubMed Central Google Scholar
Moriya, N., Minamino, T., Hughes, K. T., Macnab, R. M. & Namba, K. The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J. Mol. Biol.359, 466–477 (2006). CASPubMed Google Scholar
Tamano, K., Katayama, E., Toyotome, T. & Sasakawa, C. Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J. Bacteriol.184, 1244–1252 (2002). CASPubMedPubMed Central Google Scholar
Chakravortty, D., Rohde, M., Jager, L., Deiwick, J. & Hensel, M. Formation of a novel surface structure encoded by Salmonella pathogenicity island 2. EMBO J.24, 2043–2052 (2005). CASPubMedPubMed Central Google Scholar
Mota, L. J., Journet, L., Sorg, I., Agrain, C. & Cornelis, G. R. Bacterial injectisomes: needle length does matter. Science307, 1278 (2005). PubMed Google Scholar
West, N. P. et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science307, 1313–1317 (2005). CASPubMed Google Scholar
Pettersson, J. et al. Modulation of virulence factor expression by pathogen target cell contact. Science273, 1231–1233 (1996). CASPubMed Google Scholar
Forsberg, A., Viitanen, A. M., Skurnik, M. & Wolf-Watz, H. The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol. Microbiol.5, 977–986 (1991). CASPubMed Google Scholar
Day, J. B. & Plano, G. V. A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol. Microbiol.30, 777–788 (1998). CASPubMed Google Scholar
Iriarte, M. & Cornelis, G. R. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol.29, 915–929 (1998). CASPubMed Google Scholar
Skryzpek, E. & Straley, S. C. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J. Bacteriol.175, 3520–3528 (1993). CASPubMedPubMed Central Google Scholar
Schubot, F. D. et al. Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J. Mol. Biol.346, 1147–1161 (2005). CASPubMed Google Scholar
Nilles, M. L., Williams, A. W., Skrzypek, E. & Straley, S. C. Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J. Bacteriol.179, 1307–1316 (1997). CASPubMedPubMed Central Google Scholar
van der Goot, F. G., Tran van Nhieu, G., Allaoui, A., Sansonetti, P. & Lafont, F. Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J. Biol. Chem.279, 47792–47798 (2004). CASPubMed Google Scholar
Hayward, R. D. et al. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol. Microbiol.56, 590–603 (2005). CASPubMed Google Scholar
Kenjale, R. et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem.280, 42929–42937 (2005). CASPubMed Google Scholar
Andersson, K. et al. YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol. Microbiol.20, 1057–10569 (1996). CASPubMed Google Scholar
Schlumberger, M. C. et al. Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc. Natl Acad. Sci. USA102, 12548–12553 (2005). CASPubMedPubMed Central Google Scholar
Enninga, J., Mounier, J., Sansonetti, P. & Tran Van Nhieu, G. Secretion of type III effectors into host cells in real time. Nature Methods2, 959–965 (2005). CASPubMed Google Scholar
Cornelis, G. R., Agrain, C. & Sorg, I. Length control of extended protein structures in bacteria and bacteriophages. Curr. Opin. Microbiol.9, 201–206 (2006). CASPubMed Google Scholar
Evdokimov, A. G. et al. Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion. Nature Struct. Biol.10, 789–793 (2003). CASPubMed Google Scholar
Birtalan, S. & Ghosh, P. Structure of the Yersinia type III secretory system chaperone SycE. Nature Struct. Biol.8, 974–978 (2001). CASPubMed Google Scholar
Birtalan, S. C., Phillips, R. M. & Ghosh, P. Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell.9, 971–980 (2002). CASPubMed Google Scholar
Stebbins, C. E. & Galan, J. E. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature414, 77–81 (2001). CASPubMed Google Scholar
Fraser, G. M., Bennett, J. C. & Hughes, C. Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol. Microbiol.32, 569–580 (1999). CASPubMed Google Scholar
Auvray, F., Thomas, J., Fraser, G. M. & Hughes, C. Flagellin polymerisation control by a cytosolic export chaperone. J. Mol. Biol.308, 221–229 (2001). CASPubMedPubMed Central Google Scholar
Bennett, J. C. & Hughes, C. From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol.8, 202–204 (2000). CASPubMed Google Scholar
Neyt, C. & Cornelis, G. R. Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol. Microbiol.31, 143–156 (1999). CASPubMed Google Scholar
Wattiau, P., Bernier, B., Deslee, P., Michiels, T. & Cornelis, G. R. Individual chaperones required for Yop secretion by Yersinia. Proc. Natl Acad. Sci. USA91, 10493–10497 (1994). CASPubMedPubMed Central Google Scholar
Darwin, K. H. & Miller, V. L. Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J.20, 1850–1862 (2001). CASPubMedPubMed Central Google Scholar
Page, A. L. & Parsot, C. Chaperones of the type III secretion pathway: jacks of all trades. Mol. Microbiol.46, 1–11 (2002). CASPubMed Google Scholar
Feldman, M. F. & Cornelis, G. R. The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol. Lett.219, 151–158 (2003). CASPubMed Google Scholar
Ghosh, P. Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev.68, 771–795 (2004). CASPubMedPubMed Central Google Scholar
Parsot, C., Hamiaux, C. & Page, A. L. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol.6, 7–14 (2003). CASPubMed Google Scholar
Wattiau, P. & Cornelis, G. R. SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Mol. Microbiol.8, 123–131 (1993). CASPubMed Google Scholar
Luo, Y. et al. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nature Struct. Biol.8, 1031–1036 (2001). CASPubMed Google Scholar
Evdokimov, A. G., Tropea, J. E., Routzahn, K. M. & Waugh, D. S. Three-dimensional structure of the type III secretion chaperone SycE from Yersinia pestis. Acta Crystallogr. D Biol. Crystallogr.58, 398–406 (2002). PubMed Google Scholar
Locher, M. et al. Crystal Structure of the Yersinia enterocolitica type III secretion chaperone SycT. J. Biol. Chem.280, 31149–31155 (2005). CASPubMed Google Scholar
Trame, C. B. & McKay, D. B. Structure of the Yersinia enterocolitica molecular-chaperone protein SycE. Acta Crystallogr. D Biol. Crystallogr.59, 389–392 (2003). PubMed Google Scholar
Phan, J., Tropea, J. E. & Waugh, D. S. Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2. Acta Crystallogr. D Biol. Crystallogr.60, 1591–1599 (2004). PubMed Google Scholar
van Eerde, A., Hamiaux, C., Perez, J., Parsot, C. & Dijkstra, B. W. Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity. EMBO Rep.5, 477–483 (2004). CASPubMedPubMed Central Google Scholar
Buttner, C. R., Cornelis, G. R., Heinz, D. W. & Niemann, H. H. Crystal structure of Yersinia enterocolitica type III secretion chaperone SycT. Protein Sci.14, 1993–2002 (2005). PubMedPubMed Central Google Scholar
Boyd, A. P., Lambermont, I. & Cornelis, G. R. Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J. Bacteriol.182, 4811–4821 (2000). CASPubMedPubMed Central Google Scholar
Page, A. L., Sansonetti, P. & Parsot, C. Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol. Microbiol.43, 1533–1542 (2002). CASPubMed Google Scholar
Letzelter, M. et al. The discovery of SycO highlights a new function for type III secretion effector chaperones. EMBO J.25, 3223–3233 (2006). CASPubMedPubMed Central Google Scholar
Swietnicki, W. et al. Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance and mass spectrometry. J. Biol. Chem.279, 38693–38700 (2004). CASPubMed Google Scholar
Krall, R., Zhang, Y. & Barbieri, J. T. Intracellular membrane localization of pseudomonas ExoS and Yersinia YopE in mammalian cells. J. Biol. Chem.279, 2747–2753 (2004). CASPubMed Google Scholar
Ehrbar, K., Hapfelmeier, S., Stecher, B. & Hardt, W. D. InvB is required for type III-dependent secretion of SopA in Salmonella enterica serovar Typhimurium. J. Bacteriol.186, 1215–1219 (2004). CASPubMedPubMed Central Google Scholar
Creasey, E. A. et al. CesT is a bivalent enteropathogenic Escherichia coli chaperone required for translocation of both Tir and Map. Mol. Microbiol.47, 209–221 (2003). CASPubMed Google Scholar
Lee, S. H. & Galan, J. E. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol.51, 483–495 (2004). CASPubMed Google Scholar
Wulff-Strobel, C. R., Williams, A. W. & Straley, S. C. LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol. Microbiol.43, 411–423 (2002). CASPubMed Google Scholar
Parsot, C. et al. A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol. Microbiol.56, 1627–1635 (2005). CASPubMed Google Scholar
Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol.6, 519–529 (2005). CAS Google Scholar
Yip, C.K., Finlay, B.B. & Strynadka, N.C. Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nature Struct. Mol. Biol.12, 75–81 (2005). CAS Google Scholar
Kauppi, A. M., Nordfelth, R., Uvell, H., Wolf-Watz, H. & Elofsson, M. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem. Biol.10, 241–249 (2003). CASPubMed Google Scholar
Wolf, K. et al. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol. Microbiol.61, 1543–1555 (2006). CASPubMedPubMed Central Google Scholar
Muschiol, S. et al. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA103, 14566–14571 (2006). CASPubMedPubMed Central Google Scholar