The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities (original) (raw)
References
Moser, M.J., Holley, W.R., Chatterjee, A. & Mian, I.S. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res.25, 5110–5118 (1997). ArticleCASPubMedPubMed Central Google Scholar
Deutscher, M.P. & Li, Z. Exoribonucleases and their multiple roles in RNA metabolism. Prog. Nucleic Acid Res. Mol. Biol.66, 67–105 (2001). ArticleCASPubMed Google Scholar
Zuo, Y. & Deutscher, M.P. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res.29, 1017–1026 (2001). ArticleCASPubMedPubMed Central Google Scholar
van Hoof, A., Lennertz, P. & Parker, R. Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J.19, 1357–1365 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jacobs Anderson, J.S. & Parker, R. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J.17, 1497–1506 (1998). Article Google Scholar
van Hoof, A., Frischmeyer, P.A., Dietz, H.C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science295, 2262–2264 (2002). ArticleCASPubMed Google Scholar
Meaux, S. & Van Hoof, A. Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(A) tail in translation and mRNA decay. RNA12, 1323–1337 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell91, 457–466 (1997). ArticleCASPubMed Google Scholar
van Hoof, A., Lennertz, P. & Parker, R. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol.20, 441–452 (2000). ArticleCASPubMedPubMed Central Google Scholar
de la Cruz, J., Kressler, D., Tollervey, D. & Linder, P. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J.17, 1128–1140 (1998). ArticleCASPubMedPubMed Central Google Scholar
Liu, Q., Greimann, J.C. & Lima, C.D. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell127, 1223–1237 (2006). ArticleCASPubMed Google Scholar
Lorentzen, E. et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat. Struct. Mol. Biol.12, 575–581 (2005). ArticleCASPubMed Google Scholar
Symmons, M.F., Jones, G.H. & Luisi, B.F. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure8, 1215–1226 (2000). ArticleCASPubMed Google Scholar
Navarro, M.V., Oliveira, C.C., Zanchin, N.I. & Guimaraes, B.G. Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J. Biol. Chem.283, 14120–14131 (2008). ArticleCASPubMed Google Scholar
Lorentzen, E. & Conti, E. Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol. Cell20, 473–481 (2005). ArticleCASPubMed Google Scholar
Buttner, K., Wenig, K. & Hopfner, K.P. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol. Cell20, 461–471 (2005). ArticlePubMed Google Scholar
Dziembowski, A., Lorentzen, E., Conti, E. & Seraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat. Struct. Mol. Biol.14, 15–22 (2007). ArticleCASPubMed Google Scholar
Chekanova, J.A., Dutko, J.A., Mian, I.S. & Belostotsky, D.A. Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′ → 5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res.30, 695–700 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A. & Conti, E. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol. Cell29, 717–728 (2008). ArticleCASPubMed Google Scholar
Schneider, C., Anderson, J.T. & Tollervey, D. The exosome subunit Rrp44 plays a direct role in RNA substrate recognition. Mol. Cell27, 324–331 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wang, H.W. et al. Architecture of the yeast Rrp44 exosome complex suggests routes of RNA recruitment for 3′ end processing. Proc. Natl. Acad. Sci. USA104, 16844–16849 (2007). ArticleCASPubMedPubMed Central Google Scholar
Frazão, C. et al. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature443, 110–114 (2006). ArticlePubMed Google Scholar
Barbas, A. et al. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. J. Biol. Chem.283, 13070–13076 (2008). ArticleCASPubMed Google Scholar
Arcus, V.L., Backbro, K., Roos, A., Daniel, E.L. & Baker, E.N. Distant structural homology leads to the functional characterization of an archaeal PIN domain as an exonuclease. J. Biol. Chem.279, 16471–16478 (2004). ArticleCASPubMed Google Scholar
Levin, I. et al. Crystal structure of a PIN (PilT N-terminus) domain (AF0591) from Archaeoglobus fulgidus at 1.90 resolution. Proteins56, 404–408 (2004). ArticleCASPubMed Google Scholar
Glavan, F., Behm-Ansmant, I., Izaurralde, E. & Conti, E. Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO J.25, 5117–5125 (2006). ArticleCASPubMedPubMed Central Google Scholar
Daines, D.A., Wu, M.H. & Yuan, S.Y. VapC-1 of nontypeable Haemophilus influenzae is a ribonuclease. J. Bacteriol.189, 5041–5048 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bunker, R.D., McKenzie, J.L., Baker, E.N. & Arcus, V.L. Crystal structure of PAE0151 from Pyrobaculum aerophilum, a PIN-domain (VapC) protein from a toxin-antitoxin operon. Proteins72, 510–518 (2008). ArticleCASPubMed Google Scholar
Eberle, A.B., Lykke-Andersen, S., Muhlemann, O. & Jensen, T.H. SMG6 promoted endonucleoytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.1530 (07 December 2008).
Bleichert, F., Granneman, S., Osheim, Y.N., Beyer, A.L. & Baserga, S.J. The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation. Proc. Natl. Acad. Sci. USA103, 9464–9469 (2006). ArticleCASPubMedPubMed Central Google Scholar
Amblar, M. & Arraiano, C.M. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding. FEBS J.272, 363–374 (2005). ArticleCASPubMed Google Scholar
Amblar, M., Barbas, A., Fialho, A.M. & Arraiano, C.M. Characterization of the functional domains of Escherichia coli RNase II. J. Mol. Biol.360, 921–933 (2006). ArticleCASPubMed Google Scholar
Barbas, A. et al. New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. J. Biol. Chem.283, 13070–13076 (2008). ArticleCASPubMed Google Scholar
Cairrao, F., Arraiano, C. & Newbury, S. Drosophila gene tazman, an orthologue of the yeast exosome component Rrp44p/Dis3, is differentially expressed during development. Dev. Dyn.232, 733–737 (2005). ArticleCASPubMed Google Scholar
Johnson, A.W. & Kolodner, R.D. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell. Biol.15, 2719–2727 (1995). ArticleCASPubMedPubMed Central Google Scholar
Andrade, J.M., Pobre, V., Silva, I.J., Domingues, S. & Arraiano, C.M. The role of 3′ to 5′ exonucleases in RNA degradation. Prog. Nucleic Acid Res. Mol. Biol. (in the press).
Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature402, 413–418 (1999). ArticleCASPubMed Google Scholar
Chekanova, J.A. et al. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell131, 1340–1353 (2007). ArticleCASPubMed Google Scholar
Koonin, E.V., Wolf, Y.I. & Aravind, L. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res.11, 240–252 (2001). ArticleCASPubMedPubMed Central Google Scholar
Carpousis, A.J., Van Houwe, G., Ehretsmann, C. & Krisch, H.M. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell76, 889–900 (1994). ArticleCASPubMed Google Scholar
Py, B., Causton, H., Mudd, E.A. & Higgins, C.F. A protein complex mediating mRNA degradation in Escherichia coli. Mol. Microbiol.14, 717–729 (1994). ArticleCASPubMed Google Scholar
Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol.7, 719–723 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ingelfinger, D., Arndt-Jovin, D.J., Luhrmann, R. & Achsel, T. The human LSm1–7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA8, 1489–1501 (2002). CASPubMedPubMed Central Google Scholar
Bashkirov, V.I., Scherthan, H., Solinger, J.A., Buerstedde, J.M. & Heyer, W.D. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J. Cell Biol.136, 761–773 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zheng, D. et al. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J. Cell Biol.182, 89–101 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics122, 19–27 (1989). CASPubMedPubMed Central Google Scholar
Wilson, M.A., Meaux, S. & van Hoof, A. A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. Genetics177, 773–784 (2007). ArticleCASPubMedPubMed Central Google Scholar
van Hoof, A., Staples, R.R., Baker, R.E. & Parker, R. Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol. Cell. Biol.20, 8230–8243 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lebreton, A., Tomecki, R., Dziembowski, A. & Séraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature advance online publication, doi:10.1038/nature07480 (7 December 2008).