The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution (original) (raw)
Hirase, S. On the spermatozoids of Ginkgo biloba (in Japanese). Bot. Mag. Tokyo10, 325–328 (1896). Article Google Scholar
Hirase, S. Etudes sur la Fecondation et l’Embryogenie du Ginkgo biloba (second mémoire). J. Coll. Sci. Imp. Univ. Tokyo12, 103–149 (1898). Google Scholar
Hirase, S. Further studies on fertilisation and embryogeny in Ginkgo biloba (in Japanese). Bot. Mag. Tokyo32, 83–108 (1918). Article Google Scholar
Ridge, R. W., Hori, T. & Miyamura, S. I. Ginkgo Biloba—A Global Treasure from Biology to Medicine (eds Hori, T. et al.) 99-107 (Springer, 1997).
Zhao, M. X., Dong, Z. H., Yu, Z. H., Xiao, S. Y. & Li, Y. M. Effects of Ginkgo biloba extract in improving episodic memory of patients with mild cognitive impairment: a randomized controlled trial. J. Chin. Integr. Med.10, 628–634 (2012). Article Google Scholar
Shimamura, T. J. C. On the spermatozoid of Ginkgo biloba. Cytologia1, 416–423 (1937). Article Google Scholar
Chanderbali, A. S. et al. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc. Natl Acad. Sci. USA107, 22570–22575 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods17, 155–158 (2020).
Liu, H., Cao, F., Yin, T. & Chen, Y. A highly dense genetic map for Ginkgo biloba constructed using sequence-based markers. Front. Plant Sci.8, 1041 (2017). ArticlePubMedPubMed Central Google Scholar
Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212 (2015). ArticleCASPubMed Google Scholar
Leebens-Mack, J. H. et al. One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature574, 679–685 (2019). Article Google Scholar
Jiao, Y. N. et al. Ancestral polyploidy in seed plants and angiosperms. Nature473, 97–100 (2011). ArticleCASPubMed Google Scholar
Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature497, 579–584 (2013). ArticleCASPubMed Google Scholar
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res.40, e49 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zwaenepoel, A. & Van de Peer, Y. Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol. Biol. Evol.36, 1384–1404 (2019). ArticleCASPubMed Google Scholar
Damon, L. How important are transposons for plant evolution? Nat. Rev. Genet.14, 49–61 (2013). Article Google Scholar
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet.18, 71–86 (2017). ArticleCASPubMed Google Scholar
SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y. & Bennetzen, J. L. The paleontology of intergene retrotransposons of maize. Nat. Genet.20, 43–45 (1998). ArticleCASPubMed Google Scholar
Devos, K. M., Brown, J. K. M. & Bennetzen, J. L. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12, 1075–1079 (2002). ArticleCASPubMedPubMed Central Google Scholar
Domansky, A. N. et al. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett.472, 191–195 (2000). ArticleCASPubMed Google Scholar
Karp, G. Molekulare Zellbiologie (Springer, 2005).
Cheng, S., Xian, W., Fu, Y., Marin, B. & Melkonian, M. J. C. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell179, 1057–1067 (2019). ArticleCASPubMed Google Scholar
Yang, P. et al. Radial spoke proteins of Chlamydomonas flagella. J. Cell Sci.119, 1165–1174 (2006). ArticleCASPubMed Google Scholar
Hou, Y. et al. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J. Cell Biol.176, 653–665 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol.144, 473–481 (1999). ArticleCASPubMedPubMed Central Google Scholar
Smaczniak, C., Immink, R. G., Angenent, G. C. & Kaufmann, K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development139, 3081–3098 (2012). ArticleCASPubMed Google Scholar
Theißen, G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol.4, 75–85 (2001). ArticlePubMed Google Scholar
Krizek, B. A. & Fletcher, J. C. J. N. R. G. Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet.6, 688–698 (2005). ArticleCASPubMed Google Scholar
Matsumoto, S. & Fukui, H. J. A. H. ABCDE model for wild rose (Rosa rugosa Thunb. ex Murray) floral development. Acta Hortic.751, 369–373 (2007). Article Google Scholar
McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature411, 709–713 (2001). ArticleCASPubMed Google Scholar
Kidner, C. A. & Timmermans, M. C. Mixing and matching pathways in leaf polarity. Curr. Opin. Plant Biol.10, 13–20 (2007). ArticlePubMed Google Scholar
Singh, A. et al. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. Planta248, 545–558 (2018). ArticleCASPubMed Google Scholar
Townsley, B. T. & Sinha, N. R. A new development: evolving concepts in leaf ontogeny. Annu. Rev. Plant Biol.63, 535–562 (2012). ArticleCASPubMed Google Scholar
Xia, R., Xu, J. & Meyers, B. C. The emergence, evolution, and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell29, 1232–1247 (2017). ArticleCASPubMedPubMed Central Google Scholar
Zhu, W. et al. Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol.18, 157 (2017). ArticlePubMedPubMed Central Google Scholar
Chin, C. S., Alexander, D. H., Marks, P., Klammer, A. A. & Korlach, J. J. N. M. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods10, 563–569 (2013). Article Google Scholar
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc.8, 1494–1512 (2013). ArticleCASPubMed Google Scholar
Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res.110, 462–467 (2005). ArticleCASPubMed Google Scholar
Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics21, i351–i358 (2005). ArticleCASPubMed Google Scholar
Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res.35, W265–W268 (2007). ArticlePubMedPubMed Central Google Scholar
Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. Nucleic Acids Res.32, 1792–1797 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res.32, W309–W312 (2004). ArticleCASPubMedPubMed Central Google Scholar
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res.31, 5654–5666 (2003). ArticleCASPubMedPubMed Central Google Scholar
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform.10, 421 (2009). Article Google Scholar
She, R., Chu, J. S.-C., Wang, K., Pei, J. & Chen, N. J. G. R. GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Res.19, 143–149 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol.14, R36 (2013). ArticlePubMedPubMed Central Google Scholar
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc.7, 562–578 (2012). ArticleCASPubMedPubMed Central Google Scholar
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
Wan, T. et al. A genome for gnetophytes and early evolution of seed plants. Nat. Plants4, 82–89 (2018). ArticleCASPubMed Google Scholar
Scott, A. D. et al. A reference genome sequence for Giant Sequoia. G3 (Bethesda)10, 3907–3919 (2020). ArticleCAS Google Scholar
Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res.28, 45–48 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zdobnov, E. M. & Apweiler, R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics17, 847–848 (2001). ArticleCASPubMed Google Scholar
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 1312–1313 (2014). ArticleCASPubMedPubMed Central Google Scholar
Felsenstein, J. P. J. C. PHYLIP (Phylogeny Inference Package) v.3.6 (Univ. of Washington, 2005).
Bie, T. D., Cristianini, N., Demuth, J. P. & Hahn, Bioinformatics, M. W. J. CAFE: a computational tool for the study of gene family evolution. Bioinformatics22, 1269–1271 (2006). ArticlePubMed Google Scholar
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol.24, 1586–1591 (2007). ArticleCASPubMed Google Scholar
Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics4, 259–263 (2006). ArticleCASPubMed Google Scholar
UniProt Consortium. The universal protein resource (UniProt). Nucleic Acids Res.36, D190–D195 (2008). Article Google Scholar