Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock (original) (raw)
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys.87, 637–701 (2015). ArticleADSCAS Google Scholar
Aeppli, A., Kim, K., Warfield, W., Safronova, M. S. & Ye, J. Clock with 8 × 10−19 systematic uncertainty. Phys. Rev. Lett.133, 023401 (2024).
Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. EPL – Europhys. Lett.61, 181 (2003). ArticleADSCAS Google Scholar
Tkalya, E. V., Varlamov, V. O., Lomonosov, V. V. & Nikulin, S. A. Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr.53, 296 (1996). ArticleADSCAS Google Scholar
Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature602, 420–424 (2022). ArticleADSCASPubMed Google Scholar
Ye, J. & Zoller, P. Essay: quantum sensing with atomic, molecular, and optical platforms for fundamental physics. Phys. Rev. Lett.132, 190001 (2024). ArticleADSCASPubMed Google Scholar
von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A56, 277 (2020). ArticleADS Google Scholar
Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol.6, 034002 (2021). ArticleADS Google Scholar
Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys.3, 238–248 (2021). ArticleCAS Google Scholar
Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett.97, 092502 (2006). ArticleADSCASPubMed Google Scholar
Fadeev, P., Berengut, J. C. & Flambaum, V. V. Sensitivity of 229Th nuclear clock transition to variation of the fine-structure constant. Phys. Rev. A102, 052833 (2020). ArticleADSCAS Google Scholar
Nickerson, B. S. et al. Driven electronic bridge processes via defect states in 229Th-doped crystals. Phys. Rev. A103, 053120 (2021). ArticleADSCAS Google Scholar
Helmer, R. G. & Reich, C. W. An excited state of 229Th at 3.5 eV. Phys. Rev. C49, 1845–1858 (1994). ArticleADSCAS Google Scholar
Guimarães-Filho, Z. O. & Helene, O. Energy of the 3/2+ state of 229Th reexamined. Phys. Rev. C71, 044303 (2005). ArticleADS Google Scholar
Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett.98, 142501 (2007). ArticleADSCASPubMed Google Scholar
Beck, B. R. et al. Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus229mTh Report No. LLNL-PROC-415170 (Lawrence Livermore National Laboratory, 2009).
Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature556, 321–325 (2018). ArticleADSCASPubMed Google Scholar
Yamaguchi, A. et al. Energy of the 229Th nuclear clock isomer determined by absolute γ-ray energy difference. Phys. Rev. Lett.123, 222501 (2019). ArticleADSCASPubMed Google Scholar
Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett.125, 142503 (2020). ArticleADSCASPubMed Google Scholar
von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature533, 47–51 (2016). ArticleADSPubMed Google Scholar
Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature617, 706–710 (2023). ArticleADSCASPubMed Google Scholar
Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun.15, 5536 (2024).
Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature629, 62–66 (2024). ArticleADSCASPubMed Google Scholar
Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett.133, 013201 (2024). ArticleCASPubMed Google Scholar
Tkalya, E. V. Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh (3/2+, 3.5±1.0 eV) decay. JETP Lett.71, 311–313 (2000). ArticleADSCAS Google Scholar
Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett.104, 200802 (2010). ArticleADSPubMed Google Scholar
Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys.14, 083019 (2012). ArticleADS Google Scholar
Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon.13, 714–719 (2019). ArticleADSCAS Google Scholar
Milner, W. R. et al. Demonstration of a timescale based on a stable optical carrier. Phys. Rev. Lett.123, 173201 (2019). ArticleADSCASPubMed Google Scholar
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science369, eaay3676 (2020). ArticleCASPubMed Google Scholar
Dreissen, L. S. et al. High-precision Ramsey-comb spectroscopy based on high-harmonic generation. Phys. Rev. Lett.123, 143001 (2019). ArticleADSCASPubMed Google Scholar
Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement avity. Phys. Rev. Lett.94, 193201 (2005). ArticleADSPubMed Google Scholar
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature482, 68–71 (2012). ArticleADSPubMed Google Scholar
Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon.8, 530–536 (2014). ArticleADSCAS Google Scholar
Pupeza, I., Zhang, C., Högner, M. & Ye, J. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photon.15, 175–186 (2021). ArticleADSCAS Google Scholar
Zhang, C. et al. Tunable VUV frequency comb for 229mTh nuclear spectroscopy. Opt. Lett.47, 5591 (2022). ArticleADSCASPubMed Google Scholar
Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express19, 10232–10240 (2011). ArticleADSPubMed Google Scholar
Fischer, J. et al. Efficient XUV-light out-coupling of intra-cavity high harmonics by a coated grazing-incidence plate. Opt. Express30, 30969–30979 (2022). ArticleADSCASPubMed Google Scholar
Dessovic, P. et al. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter26, 105402 (2014). ArticleCASPubMed Google Scholar
Dunlap, B. D. & Kalvius, G. M. in Handbook on the Physics and Chemistry of the Actinides Vol. 2 (eds Freeman, A. J. & Lander, G. H.) 331–434 (Elsevier Science, 1985).
Porsev, S. G., Safronova, M. S. & Kozlov, M. G. Precision calculation of hyperfine constants for extracting nuclear moments of 229Th. Phys. Rev. Lett.127, 253001 (2021). ArticleADSCASPubMed Google Scholar
von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D74, 146 (2020). ArticleADS Google Scholar
Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon.13, 547–554 (2019). ArticleADSCAS Google Scholar
Liao, W.-T., Das, S., Keitel, C. H. & Pálffy, A. Coherence-enhanced optical determination of the 229Th isomeric transition. Phys. Rev. Lett.109, 262502 (2012). ArticleADSPubMed Google Scholar
Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater.1, 011002 (2013).
Sinclair, L. C. et al. Invited article: a compact optically coherent fiber frequency comb. Rev. Sci. Instrum.86, 081301 (2015). ArticleADSCASPubMed Google Scholar
Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys.69, 79–87 (2001). ArticleADS Google Scholar
Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett.107, 183903 (2011). ArticleADSCASPubMed Google Scholar
Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express19, 23483–23493 (2011). ArticleADSCASPubMed Google Scholar
Beeks, K. The nuclear excitation of thorium-229 in the CaF_2_ environment: development of a crystalline nuclear clock. PhD thesis, Technische Universität, Wien (2022).
Rix, S. et al. Formation of metallic colloids in CaF2 by intense ultraviolet light. Appl. Phys. Lett.99, 261909–261909 (2011). ArticleADS Google Scholar
Seiferle, B., von der Wense, L., Laatiaoui, M. & Thirolf, P. G. A VUV detection system for the direct photonic identification of the first excited isomeric state of 229Th. Eur. Phys. J. D70, 58 (2016). ArticleADS Google Scholar