Regulation and function of TPL-2, an IκB kinase-regulated MAP kinase kinase kinase (original) (raw)
Miyoshi J, Higashi T, Mukai H, Ohuchi T, Kakunaga T . Structure and transforming potential of the human cot oncogene encoding a putative protein kinase. Mol Cell Biol 1991; 11:4088–4096. ArticleCASPubMedPubMed Central Google Scholar
Patriotis C, Makris A, Bear SE, Tsichlis PN . Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T cell lymphomas and in T cell activation. Proc Natl Acad Sci USA 1993; 90:2251–2255. ArticleCASPubMedPubMed Central Google Scholar
Lund AH, Turner G, Trubetskoy A, et al. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 2002; 32:160–165. ArticleCASPubMed Google Scholar
Mikkers H, Allen J, Knipscheer P, et al. High throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 2002; 32:153–159. ArticleCASPubMed Google Scholar
Erny KM, Peli J, Lambert JF, Muller V, Diggelmann H . Involvement of the TPL-2/COT oncogene in MMTV tumorigenesis. Oncogene 1996; 13:2015–2020. CASPubMed Google Scholar
Ceci JD, Patriotis CP, Tsatsanis C, et al. TPL-2 is an oncogenic kinase that is activated by carboxy-terminal truncation. Genes Dev 1997; 11:688–700. ArticleCASPubMed Google Scholar
Aoki M, Hamada F, Sugimoto T, Sumida S, Akiyama T, Toyoshima K . The human cot proto-oncogene encodes two protein serine/threonine kinases with different transforming activities by alternative initiation of translation. J Biol Chem 1993; 268:22723–22732. CASPubMed Google Scholar
Gandara ML, Lopez P, Hernando R, Castano JG, Alemany S . The COOH-terminal domain of wild-type Cot regulates its stability and kinase specific activity. Mol Cell Biol 2003; 23:7377–7390. ArticleCASPubMedPubMed Central Google Scholar
Tsatsanis C, Vaporidi K, Zacharioudaki V, et al. Tpl2 and ERK transduce anti-proliferative T cell receptor signals and inhibit transformation of chronically stimulated T cells. Proc Natl Acad Sci USA 2008; 105:2987–2992. ArticleCASPubMedPubMed Central Google Scholar
DeCicco-Skinner KL, Trovato EL, Simmons JK, Lepage PK, Wiest JS . Loss of tumor progression locus 2 (tpl2) enhances tumorgenesis and inflammation in two-stage skin carcinogenesis. Oncogene 11 October 2010; doi: 10.1038/onc.2010.447. ArticleCASPubMedPubMed Central Google Scholar
Clark AM, Reynolds SH, Anderson M, Wiest JS . Mutational activation of the MAP3K8 proto-oncogene in lung cancer. Genes Chromosomes Cancer 2004; 41:99–108. ArticleCASPubMedPubMed Central Google Scholar
Sourvinos G, Tsichlis PN, Spandidos DA . Overexpression of the Tpl-2/Cot oncogene in human breast cancer. Oncogene 1999; 18:4968–4973. ArticleCASPubMed Google Scholar
Christoforidou AV, Papadaki HA, Margioris AN, Eliopoulos AG, Tsatsanis C . Expression of the Tpl2/Cot oncogene in human T-cell neoplasias. Mol Cancer 2004; 3:34. ArticleCASPubMedPubMed Central Google Scholar
Makris A, Patriotis C, Bear SE, Tsichlis PN . Genomic organization and expression of Tpl-2 in normal cells and moloney murine leukemia virus-induced rat T-cell lymphomas: activation by provirus insertion. J Virol 1993; 67:4283–4289. CASPubMedPubMed Central Google Scholar
Kim SO, Irwin P, Katz S, Pelech SL . Expression of mitogen-activated protein kinase pathways during postnatal development of rat heart. J Cell Biochem 1998; 71:286–301. ArticleCASPubMed Google Scholar
Ohara R, Hirota S, Onoue H, Nomura S, Kitamura Y, Toyoshima K . Identification of the cells expressing cot proto-oncogene mRNA. J Cell Sci 1995; 108:97–103. CASPubMed Google Scholar
Patriotis C, Makris A, Chernoff J, Tsichlis PN . Tpl-2 acts in concert with Ras and Raf-1 to activate mitogen-activated protein kinase. Proc Natl Acad Sci USA 1994; 91:9755–9759. ArticleCASPubMedPubMed Central Google Scholar
Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC . Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J 1996; 15:817–826. ArticleCASPubMedPubMed Central Google Scholar
Chiariello M, Marinissen MJ, Gutkind JS . Multiple mitogen-activated protein kinase signaling pathways connect the Cot oncoprotein to the c-Jun promoter and to cellular transformation. Mol Cell Biol 2000; 20:1747–1758. ArticleCASPubMedPubMed Central Google Scholar
Jia Y, Quinn CM, Bump NJ, et al. Purification and kinetic characterization of recombinant human mitogen-activated protein kinase kinase kinase COT and the complexes with its cellular partner NF-κB1 p105. Arch Biochem Biophys 2005; 441:64–74. ArticleCASPubMed Google Scholar
Tsatsanis C, Patriotis C, Bear SE, Tsichlis PN . The TPL-2 proto-oncoprotein activates the nuclear factor of activated T cells and induces interleukin 2 expression in T cell lines. Proc Natl Acad Sci USA 1998; 95:3827–3832. ArticleCASPubMedPubMed Central Google Scholar
Lin X, Cunningham ET, Mu Y, Geleziunas R, Greene WC . The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity 1999; 10:271–280. ArticlePubMed Google Scholar
Tsatsanis C, Patriotis C, Tsichlis PN . Tpl-2 induces IL-2 expression in T-cell lines by triggering multiple signaling pathways that activate NFAT and NF-κB. Oncogene 1998; 17:2609–2618. ArticleCASPubMed Google Scholar
Babu G, Waterfield M, Chang M, Wu X, Sun SC . Deregulated activation of oncoprotein kinase Tpl2/Cot in HTLV-1-transformed T cells. J Biol Chem 2006; 281:14041–14047. ArticleCASPubMed Google Scholar
Sanchez-Valdepenas C, Punzon C, San-Antonio B, Martin AG, Fresno M . Differential regulation of p65 and c-Rel NF-κB transactivating activity by Cot, protein kinase C ζ and NIK protein kinases in CD3/CD28 activated T cells. Cell Signal 2007; 19:528–537. ArticleCASPubMed Google Scholar
Karin M, Ben-Neriah Y . Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000; 18:621–663. ArticleCASPubMed Google Scholar
Belich MP, Salmeron A, Johnston LH, Ley SC . TPL-2 kinase regulates the proteolysis of the NF-κB inhibitory protein NF-κB1 p105. Nature 1999; 397:363–368. ArticleCASPubMed Google Scholar
Dumitru CD, Ceci JD, Tsatsanis C, et al. TNFα induction by LPS is regulated post-transcriptionally via a TPL2/ERK-dependent pathway. Cell 2000; 103:1071–1083. ArticleCASPubMed Google Scholar
Sriskantharajah S, Belich MP, Papoutsopoulou S, et al. Proteolysis of NF-κB1 p105 is essential for T cell antigen receptor-induced proliferation. Nat Immunol 2009; 10:38–47. ArticleCASPubMed Google Scholar
Chen LF, Greene WC . Shaping the nuclear action of NF-κB. Nat Immunol Rev 2004; 5:392–401. ArticleCAS Google Scholar
Das S, Cho J, Lambertz I, et al. Tpl2/Cot signals activate ERK, JNK and NF-κB in a cell-type and stimulus-specific manner. J Biol Chem 2005; 280:23748–23757. ArticleCASPubMed Google Scholar
Waterfield MR, Zhang M, Norman LP, Sun SC . NF-κB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the TPL-2 kinase. Mol Cell 2003; 11:685–694. ArticleCASPubMed Google Scholar
Eliopoulos AG, Wang CC, Dumitru CD, Tsichlis PN . TPL-2 transduces CD40 and TNF signals that activate ERK and regulates IgE induction by CD40. EMBO J 2003; 22:3855–3864. ArticleCASPubMedPubMed Central Google Scholar
Kaiser F, Cook D, Papoutsopoulou S, et al. TPL-2 negatively regulates interferon-beta production in macrophages and myeloid dendritic cells. J Exp Med 2009; 206:1863–1871. ArticleCASPubMedPubMed Central Google Scholar
Mielke LA, Elkins KL, Wei L, et al. Tumor progression locus 2 (Map3k8) is critical for host defense against Listeria monocytogenes and IL-1 production. J Immunol 2009; 183:7984–7993. ArticleCASPubMed Google Scholar
Cohen S, Lahav-Baratz S, Ciechanover A . Two distinct ubiquitin-dependent mechanisms are involved in NF-κB p105 proteolysis. Biochem Biophys Res Commun 2006; 345:7–13. ArticleCASPubMed Google Scholar
Savinova OV, Hoffmann A, Ghosh G . The Nfκb1 and Nfκb2 proteins p105 and p100 function as the core of high-molecular-weight heterogeneous complexes. Mol Cell 2009; 34:591–602. ArticleCASPubMedPubMed Central Google Scholar
Beinke S, Robinson MJ, Salmeron A, Hugunin M, Allen H, Ley SC . Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol Cell Biol 2004; 24:9658–9667. ArticleCASPubMedPubMed Central Google Scholar
Lang V, Janzen J, Fischer GZ, et al. βTrCP-mediated proteolysis of NF-κB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol Cell Biol 2003; 23:402–413. ArticleCASPubMedPubMed Central Google Scholar
Salmeron A, Janzen J, Soneji Y, et al. Direct phosphorylation of NF-κB p105 by the IκB kinase complex on serine 927 is essential for signal-induced p105 proteolysis. J Biol Chem 2001; 276:22215–22222. ArticleCASPubMed Google Scholar
Heissmeyer V, Krappmann D, Hatada EN, Scheidereit C . Shared pathways of IκB kinase-induced SCFβTrCP-mediated ubiquitination and degradation for the NF-κB precursor p105 and IκBα. Mol Cell Biol 2001; 21:1024–1035. ArticleCASPubMedPubMed Central Google Scholar
Orian A, Gonen H, Bercovich B, et al. SCFβTrCP ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase. EMBO J 2000; 19:2580–2591. ArticleCASPubMedPubMed Central Google Scholar
Waterfield M, Jin W, Reiley W, Zhang M, Sun SC . IkappaB kinase is an essential component of the Tpl2 signaling pathway. Mol Cell Biol 2004; 24:6040–6048. ArticleCASPubMedPubMed Central Google Scholar
Symons A, Beinke S, Ley SC . MAP kinase kinase kinases and innate immunity. Trends Immunol 2006; 27:40–48. ArticleCASPubMed Google Scholar
Luciano BS, Hsu S, Channavajhala PL, Lin LL, Cuozzo JW . Phoshorylation of threonine 290 in the activation loop of Tpl2/Cot is necessary but not sufficient for kinase activity. J Biol Chem 2004; 279:52117–52123. ArticleCASPubMed Google Scholar
Cho J, Tsichlis PN . Phosphorylation at T290 regulates Tpl2 binding to NF-κB1/p105 and Tpl2 activation and degradation by lipopolysaccharide. Proc Natl Acad Sci USA 2005; 102:2350–2355. ArticleCASPubMedPubMed Central Google Scholar
Cho J, Melnick M, Solidakis GP, Tsichlis PN . Tpl2 (tumor progression locus 2) phosphorylation at Thr290 is induced by lipopolysaccharide via an IκB kinase-β-dependent pathway and is required for Tpl2 activation by external signals. J Biol Chem 2005; 280:20442–20448. ArticleCASPubMed Google Scholar
Stafford MJ, Morrice N, Peggie MW, Cohen P . Interleukin-1 stimulated activation of the COT catalytic subunit through the phosphorylation of Thr290 and Ser62. FEBS Lett 2006: 580:4010–4014. ArticleCASPubMed Google Scholar
Handoyo H, Stafford MJ, McManus E, Baltzis D, Peggie M, Cohen P . IRAK1-independent pathways required for the interleukin 1-stimulated activation of the TPL-2 catalytic subunit and its dissociation from ABIN-2. Biochem J 2009; 424:109–118. ArticleCASPubMed Google Scholar
Robinson MJ, Beinke S, Kouroumalis A, Tsichlis PN, Ley SC . Phosphorylation of TPL-2 on serine 400 is essential for lipopolysaccharide activation of extracellular signal-regulated kinase in macrophages. Mol Cell Biol 2007; 27:7355–7364. ArticleCASPubMedPubMed Central Google Scholar
Black TM, Andrews CL, Kilili G, Ivan M, Tsichlis PN, Vouros P . Characterization of phosphorylation sites on Tpl2 using IMAC enrichment and a linear ion trap mass spectrometer. J Proteome Res 2007; 6:2269–2276. ArticleCASPubMed Google Scholar
Babu GR, Jin W, Norman L, et al. Phosphorylation of NF-κB1/p105 by oncoprotein kinase Tpl2: implications for a novel mechanism of Tpl2 regulation. Biochim Biophys Acta 2006; 1763:174–181. ArticleCASPubMed Google Scholar
Bouwmeester T, Bauch A, Ruffner H, et al. A physical and functional map of the human TNFα/NF-κB signal transduction pathway. Nat Cell Biol 2004; 6:97–105. ArticleCASPubMed Google Scholar
Lang V, Symons A, Watton SJ, et al. ABIN-2 forms a ternary complex with TPL-2 and NF-κB1 p105 and is essential for TPL-2 protein stability. Mol Cell Biol 2004; 24:5235–5248. ArticleCASPubMedPubMed Central Google Scholar
van Huffel S, Delaei F, Heyninck K, de Valck D, Beyaert R . Identification of a novel A20-binding inhibitor of nuclear factor-κB activation termed ABIN-2. J Biol Chem 2001; 276:30216–30223. ArticleCASPubMed Google Scholar
Wagner S, Carpentier I, Rogov V, et al. Ubiquitin binding mediates the NF-κB inhibitory potential of ABIN proteins. Oncogene 2008; 27:3739–3745. ArticleCASPubMed Google Scholar
Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D . Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10:466–473. ArticleCASPubMedPubMed Central Google Scholar
Papoutsopoulou S, Symons A, Tharmalingham T, et al. ABIN-2 is required for optimal activation of the TPL-2/ERK MAP kinase pathway in innate immune responses. Nat Immunol 2006; 7:606–615. ArticleCASPubMed Google Scholar
Albers M, Kranz H, Kober I, et al. Automated yeast two-hybrid screening for nuclear receptor-interacting proteins. Mol Cell Proteomics 2005; 4:205–213. ArticleCASPubMed Google Scholar
Ogawa S, Lozach J, Jepsen K, et al. A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc Natl Acad Sci USA 2004; 101:14461–14466. ArticleCASPubMedPubMed Central Google Scholar
Chien CY, Liu WK, Chou CK, Su JY . The A20-binding protein ABIN-2 exerts unexpected function in mediating transcriptional co-activation. FEBS Lett 2003; 543:55–60. ArticleCASPubMed Google Scholar
Ramirez-Carrozzi VR, Nazarian AA, Li CC, et al. Selective and antagonistic functions of SWI/SNF and Mi2β nucleosome remodeling complexes during an inflammatory response. Genes Dev 2006; 20:282–296. ArticleCASPubMedPubMed Central Google Scholar
Gringhuis SI, den Dunnen J, Litjens M, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat Immunol 2009; 10:203–213. ArticleCASPubMed Google Scholar
Rousseau S, Papoutsopoulou M, Symons A, et al. TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNF alpha in LPS-stimulated macrophages. J Cell Sci 2008; 121:149–154. ArticleCASPubMed Google Scholar
Hirata K, Miyashiro M, Ogawa H, Taki H, Tobe K, Sugita T . Inhibition of tumor progression locus 2 protein kinase decreases lipopolysaccharide-induced tumor necrosis factor α production due to inhibition of the Tip-associated protein induction in RAW264.7 cells. Biol Pharm Bull 2010; 33:1233–1237. ArticleCASPubMed Google Scholar
Soond SM, Everson B, Riches DW, Murphy G . ERK-mediated phosphorylation of Thr735 in TNFα-converting enzyme and its potential role in TACE protein trafficking. J Cell Sci 2005; 118:2371–2380. ArticleCASPubMed Google Scholar
Xiao N, Eidenschenk C, Krebs P, et al. The Tpl2 mutation sluggish impairs type I IFN production and increases susceptibility to group B Streptococcal disease. J Immunol 2009; 183:7975–7983. ArticleCASPubMed Google Scholar
Tomczak MF, Gadjeva M, Wang YY, et al. Defective activation of ERK in macrophages lacking the p50/p105 subunit of NF-κB is responsible for elevated expression of IL-12 p40 observed after challenge with Helicobacter hepaticus. J Immunol 2006; 176:1244–1251. ArticleCASPubMed Google Scholar
Windheim M, Stafford M, Peggie M, Cohen P . Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase I to facilitate NEMO binding and the activation of IκBα kinase. Mol Cell Biol 2008; 28:1783–1791. ArticleCASPubMedPubMed Central Google Scholar
Kontoyiannis D, Boulougouris G, Manoloukos M, et al. Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn's-like inflammatory bowel disease. J Exp Med 2002; 196:1563–1574. ArticleCASPubMedPubMed Central Google Scholar
Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G . Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10:387–398. ArticleCASPubMed Google Scholar
Havell EA, Moldawer LI, Halfgott D, Kilian PL, Sehgal PB . Type I IL-1 receptor blockade exacerbates murine listeriosis. J Immunol 1992; 148:1486–1492. CASPubMed Google Scholar
Rogers HW, Sheehan KC, Brunt LM, Dower SK, Unanue ER, Schreiber RD . Interleukin 1 participates in the development of anti-listerial responses in normal and SCID mice. Proc Natl Acad Sci USA 1992; 89:1011–1015. ArticleCASPubMedPubMed Central Google Scholar
Watford WT, Wang CC, Tsatsanis C, et al. Ablation of tumor progression locus 2 promotes a type 2 Th cell response in ovalbumin-immunized mice. J Immunol 2009; 184:105–113. ArticleCASPubMed Google Scholar
Yap GS, Sher A . Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiol 1999; 201:240–247. ArticleCAS Google Scholar
Sugimoto K, Ohata M, Miyoshi J, et al. A serine/threonine kinase, Cot/Tpl2, modulates bacterial DNA-induced IL-12 production and Th cell differentiation. J Clin Invest 2004; 114:857–866. ArticleCASPubMedPubMed Central Google Scholar
Kakimoto K, Musikacharoen T, Chiba N, Bandow K, Ohnishi T, Matsuguchi T . Cot/Tpl2 regulates IL-23 p19 expression in LPS-stimulated macrophages through ERK activation. J Physiol Biochem 2010; 66:47–53. ArticleCASPubMed Google Scholar
Korn T, Bettelli E, Oukka M, Kuchroo VK . IL-17 and Th17 cells. Annu Rev Immunol 2009; 27:485–517. ArticleCASPubMed Google Scholar
Banerjee A, Gugasyan R, McMahon M, Gerondakis S . Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proc Natl Acad Sci USA 2006; 103:3274–3279. ArticleCASPubMedPubMed Central Google Scholar
Banerjee A, Grumont R, Gugasyan R, White C, Strasser A, Gerondakis S . NF-κB1 and c-Rel cooperate to promote the survival of TLR4-activated B cells by neutralizing Bim via distinct mechanisms. Blood 2008; 112:5063–5073. ArticleCASPubMedPubMed Central Google Scholar
Ley R, Ewings KE, Hadfield K, Howes E, Balmanno K, Cook SJ . Extracellular signal-regulated kinases 1/2 are serum-stimulated 'Bim(EL) kinases' that bind to the BH3-only protein Bim(EL) causing its phosphorylation and turnover. J Biol Chem 2004; 279:8837–8847. ArticleCASPubMed Google Scholar
van Acker GJ, Perides G, Weiss ER, Das S, Tsichlis PN, Steer ML . Tumor progression locus-2 is a critical regulator of pancreatic and lung inflammation during acute pancreatitis. J Biol Chem 2007; 282:22140–22149. ArticleCASPubMed Google Scholar
Jager J, Gremeaux T, Gonzalez T, et al. Tpl2 kinase is upregulated in adipose tissue in obesity and may mediate interleukin-1β and tumor necrosis factor-α effects on extracellular signal-regulated kinase activation and lipolysis. Diabetes 2010; 59:61–70. ArticleCASPubMed Google Scholar
Feldmann M, Maini RN . Anti-TNFα therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001; 19:163–196. ArticleCASPubMed Google Scholar
Jacques C, Gosset M, Berenbaum F, Gabay C . The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam Horm 2006; 74:371–403. ArticleCASPubMed Google Scholar
Cohen P . Targeting protein kinases for the development of anti-inflammatory drugs. Curr Opin Cell Biol 2009; 21:1–8. ArticleCAS Google Scholar
Wellbrock C, Karasarides M, Marais R . The Raf proteins take centre stage. Nat Rev Mol Cell Biol 2004; 5:875–885. ArticleCASPubMed Google Scholar
George D, Salmeron A . Cot/TPL-2 protein kinase as a target for the treatment of inflammatory disease. Curr Topics Med Chem 2009; 9:611–622. ArticleCAS Google Scholar
George D, Friedman M, Allen H, et al. Discovery of thieno [2,3-c]pyridines as potent COT inhibitors. Bioorg Med Chem Lett 2008; 18:4952–4955. ArticleCASPubMed Google Scholar
Hall JP, Kurdi Y, Hsu S, et al. Pharmacologic inhibition of TPL-2 blocks inflammatory responses in primary human monocytes, synoviocytes, and blood. J Biol Chem 2007; 282:33295–33304. ArticleCASPubMed Google Scholar
Hu Y, Green N, Gavrin LK, et al. Inhibition of Tpl2 kinase and TNFα production with quinoline-3-carbonitriles for the treatment of rheumatoid arthritis. Bioorg Med Chem Lett 2006; 16:6067–6072. ArticleCASPubMed Google Scholar
Inamdar GS, Madhunapantula SV, Robertson GP . Targeting the MAPK pathway in melanoma: why some approaches succeed and others fail. Biochem Pharm 2010; 80:624–637. ArticleCASPubMed Google Scholar
Pratilas CA, Solit DB . Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res 2010; 16:3329–3334. ArticleCASPubMedPubMed Central Google Scholar
Heyninck K, Kreike MM, Beyaert R . Structure-function analysis of the A20-binding inhibitor of NF-κB activation, ABIN-1. FEBS Lett 2003; 536:135–140. ArticleCASPubMed Google Scholar
Skaug B, Jiang X, Chen ZJ . The role of ubiquitin in NF-κB regulatory pathways. Annu Rev Immunol 2009; 78:769–796. CAS Google Scholar
Vallabhapurapu S, Karin M . Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 2009; 27:693–733. ArticleCASPubMed Google Scholar
Solan NJ, Miyoshi H, Bren GD, Paya CV . RelB cellular regulation and transcriptional activity are regulated by p100. J Biol Chem 2001; 277:1405–1418. ArticleCASPubMed Google Scholar
Soria Castro I, Krzyzanowska A, Pelaéz ML, et al. COT/TPL2 (MAP3K8) mediates myeloperoxidase activity and hypernociecption following peripheral inflammation. J Biol Chem 2010; 285:33805–33815. ArticleCASPubMedPubMed Central Google Scholar