Pluripotent stem cells in neuropsychiatric disorders (original) (raw)
Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A et al, GBD 2013 DALYs and HALE Collaborators Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet 2015; 386: 2145–2191. ArticlePubMed Google Scholar
Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA 2013; 310: 591–608. ArticleCASPubMed Google Scholar
Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 2013; 382: 1575–1586. ArticlePubMed Google Scholar
Vigo D, Thornicroft G, Atun R . Estimating the true global burden of mental illness. Lancet Psychiatry 2016; 3: 171–178. ArticlePubMed Google Scholar
Soni A . The Five Most Costly Conditions, 1996 and 2006: Estimates for the US Civilian Noninstitutionalized Population. Statistical Brief# 248. Agency for Healthcare Research and Quality: Rockville, MD, USA, 2009. Google Scholar
Kessler RC, Heeringa S, Lakoma MD, Petukhova M, Rupp AE, Schoenbaum M et al. Individual and societal effects of mental disorders on earnings in the United States: results from the national comorbidity survey replication. Am J Psychiatry 2008; 165: 703–711. ArticlePubMedPubMed Central Google Scholar
WHO Mental Health Gap Action Programme (mhGAP) [Internet]. WHO. World Health Organization; [cited 16 February 2017]. Available from: http://www.who.int/mental_health/mhgap/en/.
Lund C, Tomlinson M, De Silva M, Fekadu A, Shidhaye R, Jordans M et al. PRIME: a programme to reduce the treatment gap for mental disorders in five low-and middle-income countries. PLoS Med 2012; 9: e1001359. ArticlePubMedPubMed Central Google Scholar
Plomin R, Owen MJ, McGuffin P . The genetic basis of complex human behaviors. Science 1994; 264: 1733–1739. ArticleCASPubMed Google Scholar
McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A . The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003; 60: 497–502. ArticlePubMed Google Scholar
Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192. ArticlePubMed Google Scholar
Locatelli I, Lichtenstein P, Yashin AI . The heritability of breast cancer: a Bayesian correlated frailty model applied to Swedish twins data. Twin Res 2004; 7: 182–191. ArticlePubMed Google Scholar
Stumvoll M, Goldstein BJ, van Haeften TW . Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365: 1333–1346. ArticleCASPubMed Google Scholar
Hunt SC, Hasstedt SJ, Kuida H, Stults BM, Hopkins PN, Williams RR . Genetic heritability and common environmental components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. Am J Epidemiol 1989; 129: 625–638. ArticleCASPubMed Google Scholar
Gratten J, Wray NR, Keller MC, Visscher PM . Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci 2014; 17: 782–790. ArticleCASPubMedPubMed Central Google Scholar
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147. ArticleCASPubMed Google Scholar
Murry CE, Keller G . Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008; 132: 661–680. ArticleCASPubMed Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872. ArticleCASPubMed Google Scholar
Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26: 1276–1284. ArticleCASPubMed Google Scholar
Petit I, Kesner NS, Karry R, Robicsek O, Aberdam E, Muller FJ et al. Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders. Stem Cell Res 2012; 8: 134–140. ArticleCASPubMed Google Scholar
Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 2010; 7: 20–24. ArticleCASPubMedPubMed Central Google Scholar
Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A et al. A comparison of non-integrating reprogramming methods. Nat Biotechnol 2015; 33: 58–63. ArticleCASPubMed Google Scholar
Vitale AM, Matigian NA, Ravishankar S, Bellette B, Wood SA, Wolvetang EJ et al. Variability in the generation of induced pluripotent stem cells: importance for disease modeling. Stem Cells Transl Med 2012; 1: 641–650. ArticleCASPubMedPubMed Central Google Scholar
Paull D, Sevilla A, Zhou H, Hahn AK, Kim H, Napolitano C et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat Methods 2015; 12: 885–892. ArticleCASPubMed Google Scholar
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M . Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035–1041. ArticleCASPubMedPubMed Central Google Scholar
Avior Y, Sagi I, Benvenisty N . Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 2016; 17: 170–182. ArticleCASPubMed Google Scholar
Lee G, Ramirez CN, Kim H, Zeltner N, Liu B, Radu C et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 2012; 30: 1244–1248. ArticleCASPubMedPubMed Central Google Scholar
Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SS, Sandoe J et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 2014; 7: 1–11. ArticleCASPubMedPubMed Central Google Scholar
Medine CN, Lucendo-Villarin B, Storck C, Wang F, Szkolnicka D, Khan F et al. Developing high-fidelity hepatotoxicity models from pluripotent stem cells. Stem Cells Transl Med 2013; 2: 505–509. ArticleCASPubMedPubMed Central Google Scholar
Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 2014; 515: 414–418. ArticleCASPubMedPubMed Central Google Scholar
Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI et al. Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature 2016; 533: 95–99. ArticleCASPubMedPubMed Central Google Scholar
Garbes L, Heesen L, Holker I, Bauer T, Schreml J, Zimmermann K et al. VPA response in SMA is suppressed by the fatty acid translocase CD36. Hum Mol Genet 2013; 22: 398–407. ArticleCASPubMed Google Scholar
Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527–539. ArticleCASPubMedPubMed Central Google Scholar
Cundiff PE, Anderson SA . Impact of induced pluripotent stem cells on the study of central nervous system disease. Curr Opin Genet Dev 2011; 21: 354–361. ArticleCASPubMedPubMed Central Google Scholar
Haggarty SJ, Silva MC, Cross A, Brandon NJ, Perlis RH . Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Mol Cell Neurosci 2016; 73: 104–115. ArticleCASPubMedPubMed Central Google Scholar
Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221–225. ArticleCASPubMedPubMed Central Google Scholar
Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J et al. A role for noncoding variation in schizophrenia. Cell Rep 2014; 9: 1417–1429. ArticleCASPubMedPubMed Central Google Scholar
Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2163–2196. ArticlePubMedPubMed Central Google Scholar
Xu Z, Jiang H, Zhong P, Yan Z, Chen S, Feng J . Direct conversion of human fibroblasts to induced serotonergic neurons. Mol Psychiatry 2016; 21: 62–70. ArticleCASPubMed Google Scholar
Vadodaria KC, Mertens J, Paquola A, Bardy C, Li X, Jappelli R et al. Generation of functional human serotonergic neurons from fibroblasts. Mol Psychiatry 2016; 21: 49–61. ArticleCASPubMed Google Scholar
Lu J, Zhong X, Liu H, Hao L, Huang CT, Sherafat MA et al. Generation of serotonin neurons from human pluripotent stem cells. Nat Biotechnol 2016; 34: 89–94. ArticleCASPubMed Google Scholar
Diaz SL, Doly S, Narboux-Neme N, Fernandez S, Mazot P, Banas SM et al. 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 2012; 17: 154–163. ArticleCASPubMed Google Scholar
Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010; 65: 40–52. ArticleCASPubMedPubMed Central Google Scholar
Mohler H . The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012; 62: 42–53. ArticleCASPubMed Google Scholar
Klumpers UM, Veltman DJ, Drent ML, Boellaard R, Comans EF, Meynen G et al. Reduced parahippocampal and lateral temporal GABAA-[11C]flumazenil binding in major depression: preliminary results. Eur J Nucl Med Mol Imaging 2010; 37: 565–574. ArticleCASPubMed Google Scholar
Rajkowska G, O'Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ . GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 2007; 32: 471–482. ArticleCASPubMed Google Scholar
Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ et al. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 2010; 68: 521–527. ArticleCASPubMedPubMed Central Google Scholar
Tyagarajan SK, Ghosh H, Yevenes GE, Nikonenko I, Ebeling C, Schwerdel C et al. Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc Natl Acad Sci USA 2011; 108: 379–384. ArticleCASPubMed Google Scholar
Cunningham M, Cho JH, Leung A, Savvidis G, Ahn S, Moon M et al. hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell 2014; 15: 559–573. ArticleCASPubMedPubMed Central Google Scholar
Perez SM, Lodge DJ . Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia. Mol Psychiatry 2013; 18: 1193–1198. ArticleCASPubMedPubMed Central Google Scholar
Vithlani M, Hines RM, Zhong P, Terunuma M, Hines DJ, Revilla-Sanchez R et al. The ability of BDNF to modify neurogenesis and depressive-like behaviors is dependent upon phosphorylation of tyrosine residues 365/367 in the GABA(A)-receptor gamma2 subunit. J Neurosci 2013; 33: 15567–15577. ArticleCASPubMedPubMed Central Google Scholar
Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 2003; 23: 349–357. ArticleCASPubMedPubMed Central Google Scholar
Nagahara AH, Tuszynski MH . Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 2011; 10: 209–219. ArticleCASPubMed Google Scholar
Liu G, Rustom N, Litteljohn D, Bobyn J, Rudyk C, Anisman H et al. Use of induced pluripotent stem cell derived neurons engineered to express BDNF for modulation of stressor related pathology. Front Cell Neurosci 2014; 8: 316. PubMedPubMed Central Google Scholar
Judd LL, Akiskal HS . The prevalence and disability of bipolar spectrum disorders in the US population: re-analysis of the ECA database taking into account subthreshold cases. J Affect Disord 2003; 73: 123–131. ArticlePubMed Google Scholar
Chen HM, DeLong CJ, Bame M, Rajapakse I, Herron TJ, McInnis MG et al. Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Transl Psychiatry 2014; 4: e375. ArticleCASPubMedPubMed Central Google Scholar
Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry 2015; 20: 703–717. ArticleCASPubMedPubMed Central Google Scholar
Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 2015; 527: 95–99. ArticleCASPubMedPubMed Central Google Scholar
Wang JL, Shamah SM, Sun AX, Waldman ID, Haggarty SJ, Perlis RH . Label-free, live optical imaging of reprogrammed bipolar disorder patient-derived cells reveals a functional correlate of lithium responsiveness. Transl Psychiatry 2014; 4: e428. ArticleCASPubMedPubMed Central Google Scholar
Harrison PJ, Cader MZ, Geddes JR . Reprogramming psychiatry: stem cells and bipolar disorder. Lancet 2016; 387: 823–825. ArticlePubMed Google Scholar
Zhao WN, Cheng C, Theriault KM, Sheridan SD, Tsai LH, Haggarty SJ . A high-throughput screen for Wnt/beta-catenin signaling pathway modulators in human iPSC-derived neural progenitors. J Biomol Screen 2012; 17: 1252–1263. ArticlePubMedPubMed Central Google Scholar
Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry 2011; 16: 358–360. ArticleCASPubMedPubMed Central Google Scholar
Kessler RM, Woodward ND, Riccardi P, Li R, Ansari MS, Anderson S et al. Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol Psychiatry 2009; 65: 1024–1031. ArticleCASPubMedPubMed Central Google Scholar
Markota M, Sin J, Pantazopoulos H, Jonilionis R, Berretta S . Reduced dopamine transporter expression in the amygdala of subjects diagnosed with schizophrenia. Schizophr Bull 2014; 40: 984–991. ArticlePubMedPubMed Central Google Scholar
Patel NH, Vyas NS, Puri BK, Nijran KS, Al-Nahhas A . Positron emission tomography in schizophrenia: a new perspective. J Nucl Med 2010; 51: 511–520. ArticleCASPubMed Google Scholar
da Silva Alves F, Figee M, van Amelsvoort T, Veltman D, de Haan L . The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication. Psychopharmacol Bull 2008; 41: 121–132. PubMed Google Scholar
Grace AA . Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 2012; 62: 1342–1348. ArticleCASPubMed Google Scholar
Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 2011; 480: 547–551. ArticleCASPubMedPubMed Central Google Scholar
Hartley BJ, Tran N, Ladran I, Reggio K, Brennand KJ . Dopaminergic differentiation of schizophrenia hiPSCs. Mol Psychiatry 2015; 20: 549–550. ArticleCASPubMedPubMed Central Google Scholar
Robicsek O, Karry R, Petit I, Salman-Kesner N, Muller FJ, Klein E et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 2013; 18: 1067–1076. ArticleCASPubMed Google Scholar
Lodge DJ, Grace AA . Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci 2007; 27: 11424–11430. ArticleCASPubMedPubMed Central Google Scholar
Perez SM, Shah A, Asher A, Lodge DJ . Hippocampal deep brain stimulation reverses physiological and behavioural deficits in a rodent model of schizophrenia. Int J Neuropsychopharmacol 2013; 16: 1331–1339. ArticleCASPubMed Google Scholar
Lodge DJ, Behrens MM, Grace AA . A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci 2009; 29: 2344–2354. ArticleCASPubMedPubMed Central Google Scholar
Gilani AI, Chohan MO, Inan M, Schobel SA, Chaudhury NH, Paskewitz S et al. Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition. Proc Natl Acad Sci USA 2014; 111: 7450–7455. ArticleCASPubMedPubMed Central Google Scholar
Lewis DA, Gonzalez-Burgos G . Pathophysiologically based treatment interventions in schizophrenia. Nat Med 2006; 12: 1016–1022. ArticleCASPubMed Google Scholar
Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS . Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry 2010; 167: 1479–1488. ArticlePubMed Google Scholar
Donegan JJ, Tyson JA, Branch SY, Beckstead MJ, Anderson SA, Lodge DJ . Stem cell-derived interneuron transplants as a treatment for schizophrenia: preclinical validation in a rodent model. Mol Psychiatry 2016: e-pub ahead of print 2 August 2016. doi: 10.1038/mp.2016.121. ArticleCASPubMedPubMed Central Google Scholar
Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 2013; 12: 573–586. ArticleCASPubMedPubMed Central Google Scholar
Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang SC . Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc 2013; 8: 1670–1679. ArticleCASPubMedPubMed Central Google Scholar
Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 2013; 12: 559–572. ArticleCASPubMedPubMed Central Google Scholar
Shetty AK, Bates A . Potential of GABA-ergic cell therapy for schizophrenia, neuropathic pain, and Alzheimers and Parkinsons diseases. Brain Res 2016; 1638: 74–87. ArticleCASPubMed Google Scholar
Braz JM, Sharif-Naeini R, Vogt D, Kriegstein A, Alvarez-Buylla A, Rubenstein JL et al. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain. Neuron 2012; 74: 663–675. ArticleCASPubMedPubMed Central Google Scholar
Brennand KJ, Marchetto MC, Benvenisty N, Brustle O, Ebert A, Izpisua Belmonte JC et al. Creating patient-specific neural cells for the in vitro study of brain disorders. Stem Cell Reports 2015; 5: 933–945. ArticlePubMedPubMed Central Google Scholar
Nashun B, Hill PW, Hajkova P . Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J 2015; 34: 1296–1308. ArticleCASPubMedPubMed Central Google Scholar
Hajkova P . Epigenetic reprogramming—taking a lesson from the embryo. Curr Opin Cell Biol 2010; 22: 342–350. ArticleCASPubMed Google Scholar
Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 2010; 28: 848–855. ArticleCASPubMedPubMed Central Google Scholar
Yang N, Ng YiH, Pang Zhiping P, Südhof Thomas C, Wernig M . Induced neuronal cells: how to make and define a neuron. Cell Stem Cell9: 517–525. ArticleCASPubMedPubMed Central Google Scholar
Ivanov NA, Tao R, Chenoweth JG, Brandtjen A, Mighdoll MI, Genova JD et al. Strong components of epigenetic memory in cultured human fibroblasts related to site of origin and donor age. PLoS Genet 2016; 12: e1005819. ArticleCASPubMedPubMed Central Google Scholar
Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry 2015; 80: 372–380. ArticleCASPubMed Google Scholar
Dietz DM, Laplant Q, Watts EL, Hodes GE, Russo SJ, Feng J et al. Paternal transmission of stress-induced pathologies. Biol Psychiatry 2011; 70: 408–414. ArticlePubMedPubMed Central Google Scholar
Vera E, Studer L . When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease. Development 2015; 142: 3085–3089. ArticleCASPubMedPubMed Central Google Scholar
Studer L, Vera E, Cornacchia D . Programming and reprogramming cellular age in the era of induced pluripotency. Cell stem cell 2015; 16: 591–600. ArticleCASPubMedPubMed Central Google Scholar
Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E et al. Copy number variation and selection during reprogramming to pluripotency. Nature 2011; 471: 58–62. ArticleCASPubMed Google Scholar
Vierbuchen T, Wernig M . Molecular roadblocks for cellular reprogramming. Mol Cell 2012; 47: 827–838. ArticleCASPubMed Google Scholar
Ho SM, Hartley BJ, Tcw J, Beaumont M, Stafford K, Slesinger PA et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods 2016; 101: 113–124. ArticleCASPubMed Google Scholar
Steinbeck JA, Jaiswal MK, Calder EL, Kishinevsky S, Weishaupt A, Toyka KV et al. Functional connectivity under optogenetic control allows modeling of human neuromuscular disease. Cell Stem Cell 2016; 18: 134–143. ArticleCASPubMed Google Scholar
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME et al. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501: 373–379. ArticleCASPubMed Google Scholar
Pasca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 2015; 12: 671–678. ArticleCASPubMedPubMed Central Google Scholar
Pozsgay V, Brisson JR, Jennings HJ . Synthesis of a tri- and a tetra-saccharide fragment of the capsular polysaccharide of type III group B Streptococcus. Carbohydr Res 1990; 205: 133–146. ArticleCASPubMed Google Scholar
Byers B, Lee HJ, Liu J, Weitz AJ, Lin P, Zhang P et al. Direct in vivo assessment of human stem cell graft-host neural circuits. Neuroimage 2015; 114: 328–337. ArticlePubMed Google Scholar
Hemmer K, Zhang M, van Wullen T, Sakalem M, Tapia N, Baumuratov A et al. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain. Stem Cell Reports 2014; 3: 423–431. ArticlePubMedPubMed Central Google Scholar
Muotri AR, Nakashima K, Toni N, Sandler VM, Gage FH . Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc Natl Acad Sci USA 2005; 102: 18644–18648. ArticleCASPubMedPubMed Central Google Scholar
Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011; 25: 88–103. ArticleCASPubMed Google Scholar
Hook V, Brennand Kristen J, Kim Y, Toneff T, Funkelstein L, Lee Kelly C et al. Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Reports3: 531–538. ArticleCASPubMedPubMed Central Google Scholar
Siegert S, Seo J, Kwon EJ, Rudenko A, Cho S, Wang W et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat Neurosci 2015; 18: 1008–1016. ArticleCASPubMedPubMed Central Google Scholar
Srikanth P, Han K, Callahan DG, Makovkina E, Muratore CR, Lalli MA et al. Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate. Cell Rep 2015; 12: 1414–1429. ArticleCASPubMedPubMed Central Google Scholar
Bavamian S, Mellios N, Lalonde J, Fass DM, Wang J, Sheridan SD et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry 2015; 20: 573–584. ArticleCASPubMedPubMed Central Google Scholar