Smith, I. E. Efficacy and safety of Herceptin in women with metastatic breast cancer: results from pivotal clinical studies. Anticancer Drugs (suppl. 4), S3–S10 (2001).
Salgaller, M. Technology evaluation: bevacizumab, Genentech/Roche. Curr. Opin. Mol. Ther.5, 657–667 (2003). CASPubMed Google Scholar
Schadt, E. E., Monks, S. A. & Friend, S. H. A new paradigm for drug discovery: integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Biochem. Soc. Trans.31, 437–443 (2003). ArticleCASPubMed Google Scholar
Fischer, O. M., Streit, S., Hart, S. & Ullrich, A. Herceptin and Gleevec. Curr. Opin. Chem. Biol.7, 490–495 (2003). ArticleCASPubMed Google Scholar
Bardelli, A. et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science300, 949 (2003).
Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science304, 554 (2004).
Hilgenfeld, E. et al. Spectral karyotyping in cancer cytogenetics. Methods Mol. Med.68, 29–44 (2002). PubMed Google Scholar
Lucito, R. et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res.13, 2291–2305 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cowell, J. K. & Nowak, N. J. High-resolution analysis of genetic events in cancer cells using bacterial artificial chromosome arrays and comparative genome hybridization. Adv. Cancer Res.90, 91–125 (2003). ArticleCASPubMed Google Scholar
Liang, G. et al. DNA methylation differences associated with tumor tissues identified by genome scanning analysis. Genomics53, 260–268 (1998). ArticleCASPubMed Google Scholar
Cottrell, S. E. et al. A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res.32, e10 (2004). ArticlePubMedPubMed Central Google Scholar
Greshock, J. et al. 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res.14, 179–187 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, T. L. et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc. Natl Acad. Sci. USA101, 3089–3094 (2004). ArticleADSCASPubMedPubMed Central Google Scholar
Beroud, C. & Soussi, T. UMD-p53 database: New mutations and analysis tools. Hum. Mutat.21, 176–181 (2003). ArticleCASPubMed Google Scholar
Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer4, 177–183 (2004). ArticleCAS Google Scholar
Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet.33, 49–54 (2003). ArticleCASPubMed Google Scholar
Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100, 8418–8423 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Rosenwald, A. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J. Exp. Med.198, 851–862 (2003). ArticleCASPubMedPubMed Central Google Scholar
van 't Veer, L. J. et al. Expression profiling predicts outcome in breast cancer. Breast Cancer Res.5, 57–58 (2003). ArticlePubMed Google Scholar
van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347, 1999–2009 (2002). ArticleCASPubMed Google Scholar
Nutt, C. L. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res.63, 1602–1607 (2003). CASPubMed Google Scholar
Dyrskjot, L. et al. Identifying distinct classes of bladder carcinoma using microarrays. Nature Genet.33, 90–96 (2003). ArticleCASPubMed Google Scholar
Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene-expression. Science270, 484–487 (1995). ArticleADSCASPubMed Google Scholar
Lal, A. et al. A public database for gene expression in human cancers. Cancer Res.59, 5403–5407 (1999). CASPubMed Google Scholar
Buckhaults, P. et al. Identifying tumor origin using a gene expression-based classification map. Cancer Res.63, 4144–4149 (2003). CASPubMed Google Scholar
Jongeneel, C. V. et al. Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing. Proc. Natl Acad. Sci. USA100, 4702–4705 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Brentani, H. et al. The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags Proc. Natl Acad. Sci. USA100, 13418–13423 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Strausberg, R. L. et al. An international database and integrated analysis tools for the study of cancer gene expression. Pharmacogenomics J.2, 156–164 (2002). ArticleCASPubMed Google Scholar
Saha, S. et al. Using the transcriptome to annotate the genome. Nature Biotechnol.20, 508–512 (2002). ArticleCAS Google Scholar
Ota, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genet.36, 40–45 (2004). ArticlePubMed Google Scholar
Strausberg, R. L. et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl Acad. Sci. USA99, 16899–16903 (2002). ArticleADSPubMed Google Scholar
Xu, Q. & Lee, C. Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. Nucleic Acids Res.31, 5635–5643 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z. et al. Computational analysis and experimental validation of tumor-associated alternative RNA splicing in human cancer. Cancer Res.63, 655–657 (2003). CASPubMed Google Scholar
Kriventseva, E. V. et al. Increase of functional diversity by alternative splicing. Trends Genet.19, 124–128 (2003). ArticleCASPubMed Google Scholar
Strausberg, R. L., Simpson, A. J. & Wooster, R. Sequence-based cancer genomics: progress, lessons and opportunities. Nature Rev. Genet.4, 409–418 (2003). ArticleCASPubMed Google Scholar
Drevs, J., Medinger, M., Schmidt-Gersbach, C., Weber, R. & Unger, C. Receptor tyrosine kinases: the main targets for new anticancer therapy. Curr. Drug Targets4, 113–121 (2003). ArticleCASPubMed Google Scholar
Sausville, E. A., Elsayed, Y., Monga, M. & Kim, G. Signal transduction — directed cancer treatments. Annu. Rev. Pharmacol. Toxicol.43, 199–231 (2003). ArticleCASPubMed Google Scholar
Cockerill, G. S. & Lackey, K. E. Small molecule inhibitors of the class 1 receptor tyrosine kinase family. Curr. Top. Med. Chem.2, 1001–1010 (2002). ArticleCASPubMed Google Scholar
Wilhelm, S. & Chien, D. S. BAY 43-9006: preclinical data. Curr. Pharm. Des.8, 2255–2257 (2002). ArticleCASPubMed Google Scholar
Joensuu, H. & Dimitrijevic, S. Tyrosine kinase inhibitor imatinib (STI571) as an anticancer agent for solid tumours. Ann. Med.33, 451–455 (2001). ArticleCASPubMed Google Scholar
Demetri, G. D. Targeting the molecular pathophysiology of gastrointestinal stromal tumors with imatinib. Mechanisms, successes, and challenges to rational drug development. Hematol. Oncol. Clin. North Am.16, 1115–1124 (2002). ArticlePubMed Google Scholar
Druker, B. Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opin. Pharmacother.4, 963–971 (2003). ArticleCASPubMed Google Scholar
Tipping, A. J. & Melo, J. V. Imatinib mesylate in combination with other chemotherapeutic drugs: In vitro studies. Semin. Hematol.40, 83–91 (2003). ArticleCASPubMed Google Scholar
Druker, B. Imatinib alone and in combination for chronic myeloid leukemia. Semin. Hematol.40, 50–58 (2003). ArticleCASPubMed Google Scholar
Joensuu, H. et al. Management of malignant gastrointestinal stromal tumours. Lancet Oncol.3, 655–664 (2002). ArticleCASPubMed Google Scholar
Joensuu, H. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med.344, 1052–1056 (2001). ArticleCASPubMed Google Scholar
GIST SU11248 Study Group. Clinical activity and tolerability of the multi-targeted tyrosine kinase inhibitor SU11248 in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) refractory to imatinib mesylate. Proc. Am. Soc. Clin. Oncol.22, 814 (abstr. 3273) (2003).
Egland, K. A., Vincent, J. J., Strausberg, R., Lee, B. & Pastan, I. Discovery of the breast cancer gene BASE using a molecular approach to enrich for genes encoding membrane and secreted proteins. Proc. Natl Acad. Sci. USA100, 1099–1104 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Olsson, P., Motegi, A., Bera, T. K., Lee, B. & Pastan, I. PRAC2: a new gene expressed in human prostate and prostate cancer. Prostate56, 123–130 (2003). ArticleCASPubMed Google Scholar
Jager, D. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res.61, 2055–2061 (2001). CASPubMed Google Scholar
Bera, T. K. NGEP, a gene encoding a membrane protein detected only in prostate cancer and normal prostate. Proc. Natl Acad. Sci. USA101, 3059–3064 (2004). ArticleADSCASPubMedPubMed Central Google Scholar
Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J. & Chen, Y. T. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev.188, 22–32 (2002). ArticleCASPubMed Google Scholar
Scanlan, M. J., Simpson, A. J. & Old, L. J. The cancer/testis genes: review, standardization, and commentary. Cancer Immun.4, 1 (2004). PubMed Google Scholar
Scanlan, M. J. et al. Identification of cancer/testis genes by database mining and mRNA expression analysis. Int. J. Cancer98, 485–492 (2002). ArticleCASPubMed Google Scholar
Old, L. J. Cancer/testis (CT) antigens - a new link between gametogenesis and cancer. Cancer Immun. 1, 1 (2001). CASPubMed Google Scholar
Durrant, L. G. & Spendlove, I. Cancer vaccines entering Phase III clinical trials. Expert Opin. Emerg. Drugs8, 489–500 (2003). ArticleCASPubMed Google Scholar
Jager, E., Jager, D. & Knuth, A. Antigen-specific immunotherapy and cancer vaccines. Int. J. Cancer106, 817–820 (2003). ArticlePubMedCAS Google Scholar
Albanell, J., Codony, J., Rovira, A., Mellado, B. & Gascon, P. Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv. Exp. Med. Biol.532, 253–268 (2003). ArticleCASPubMed Google Scholar
Blackledge, G. & Averbusch, S. Gefitinib (‘Iressa’, ZD1839) and new epidermal growth factor receptor inhibitors. Br. J. Cancer90, 566–572 (2004). ArticleCASPubMedPubMed Central Google Scholar
Coiffier, B. Immunochemotherapy: the new standard in aggressive non-Hodgkin's lymphoma in the elderly. Semin. Oncol.30, 21–27 (2003). ArticleCASPubMed Google Scholar
Wannesson, L. & Ghielmini, M. Overview of antibody therapy in B-cell non-Hodgkin's lymphoma. Clin. Lymphoma4 (suppl. 1), S5-S12 (2003). ArticlePubMed Google Scholar
Jain, R. K. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin. Oncol.29, 3–9 (2002). ArticleCASPubMed Google Scholar
Milenic, D. E. & Brechbiel, M. W. Targeting of radio-isotopes for cancer therapy. Cancer Biol. Ther.3 (2004).
Damle, N. K. & Frost, P. Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr. Opin. Pharmacol.3, 386–390 (2003). ArticleCASPubMed Google Scholar
McCormick, F. Cancer-specific viruses and the development of ONYX-015. Cancer Biol. Ther.2 (suppl. 1), s157-s160 (2003). CASPubMed Google Scholar
Tong, A. W., Zhang, Y. A., Cunningham, C., Maples, P. & Nemunaitis, J. Potential clinical application of antioncogene ribozymes for human lung cancer. Clin. Lung Cancer2, 220–226 (2001). ArticleCASPubMed Google Scholar
Moon, C., Oh, Y. & Roth, J. A. Current status of gene therapy for lung cancer and head and neck cancer. Clin. Cancer Res.9, 5055–5067 (2003). CASPubMed Google Scholar
McNeish, I. A., Bell, S. J. & Lemoine, N. R. Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Ther.11, 497–503 (2004). ArticleCASPubMed Google Scholar
Torrance, C. J., Agrawal, V., Vogelstein, B. & Kinzler, K. W. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nature Biotechnol.19, 940–945 (2001). ArticleCAS Google Scholar
Strausberg, R. L. & Schreiber, S. L. From knowing to controlling: a path from genomics to drugs using small molecule probes. Science300, 294–295 (2003). ArticleADSCASPubMed Google Scholar
Koehler, A. N., Shamji, A. F. & Schreiber, S. L. Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J. Am. Chem. Soc.125, 8420–8421 (2003). ArticleCASPubMed Google Scholar
Collins, F. S., Morgan, M. & Patrinos, A. The Human Genome Project: lessons from large-scale biology. Science300, 286–290 (2003). ArticleADSCASPubMed Google Scholar
Newman, D. J., Cragg, G. M. & Snader, K. M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod.66, 1022–1037 (2003). ArticleCASPubMed Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature403, 853–858 (2000). ArticleADSCASPubMed Google Scholar
Brizuela, L., Richardson, A., Marsischky, G. & Labaer, J. The FLEXGene repository: Exploiting the fruits of the genome projects by creating a needed resource to face the challenges of the post-genomic era. Arch. Med. Res.33, 318–324 (2002). ArticleCASPubMed Google Scholar
Kretzschmar, T. & von Ruden, T. Antibody discovery: phage display. Curr. Opin. Biotechnol.13, 598–602 (2002) ArticleCASPubMed Google Scholar
Brekke, O. H. & Loset, G. A. New technologies in therapeutic antibody development. Curr. Opin. Pharmacol.3, 544–550 (2003). ArticleCASPubMed Google Scholar
Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature380, 364–366 (1996). ArticleADSCASPubMed Google Scholar
Ellerby, H. M. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nature Med.5, 1032–1038 (1999). ArticleCASPubMed Google Scholar
Scott, A. M. et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res.9, 1639–1647 (2003). CASPubMed Google Scholar
Welt, S. et al. Phase I study of anticolon cancer humanized antibody A33. Clin. Cancer Res.9, 1338–1346 (2003). CASPubMed Google Scholar
Scott, A. M. et al. Specific targeting, biodistribution, and lack of immunogenicity of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma: results of a phase I trial. J. Clin. Oncol.19, 3967–3987 (2001). Article Google Scholar
Jager, E. et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc. Natl Acad. Sci. USA97, 12198–12203 (2000). ArticleADSCASPubMedPubMed Central Google Scholar
Atanackovic, D. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J. Immunol.172, 3289–3296 (2004). ArticleCASPubMed Google Scholar
Rapisarda, A. et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res.62, 4316–4324 (2002). CASPubMed Google Scholar