Friend, S.H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature323, 643–646 (1986). ArticleCASPubMed Google Scholar
Doll, R. & Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst.66, 1191–1308 (1981). ArticleCASPubMed Google Scholar
Peto, J. Cancer epidemiology in the last century and the next decade. Nature411, 390–395 (2001). ArticleCASPubMed Google Scholar
Buell, P. & Dunn, J.E. Cancer mortality among Japanese Issei and Nisei of California. Cancer18, 656–664 (1965). ArticleCASPubMed Google Scholar
Newman, B., Austin, M.A., Lee, M. & King, M.C. Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proc. Natl. Acad. Sci. USA85, 3044–3048 (1988). ArticleCASPubMedPubMed Central Google Scholar
Claus, E.B., Risch, N. & Thompson, W.D. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am. J. Hum. Genet.48, 232–242 (1991). CASPubMedPubMed Central Google Scholar
Peto, J. in Cancer Incidence in Defined Populations Vol. 4, Banbury Report (eds. Cairns, J., Lyon, J.L. & Skolnik, M.) 203–213 (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1980). Google Scholar
Hall, J.M. et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science250, 1684–1689 (1990). ArticleCASPubMed Google Scholar
Linzer, D.I. & Levine, A.J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell17, 43–52 (1979). ArticleCASPubMed Google Scholar
Lane, D.P. & Crawford, L.V. Tantigen is bound to a host protein in SV40-transformed cells. Nature278, 261–263 (1979). ArticleCASPubMed Google Scholar
Baker, S.J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science244, 217–221 (1989). ArticleCASPubMed Google Scholar
Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science250, 1233–1238 (1990). ArticleCASPubMed Google Scholar
Kinzler, K.W. & Vogelstein, B. Colorectal tumors. In The Genetic Basis of Human Cancer (ed. Kinzler, K.W.) 583–612 (McGraw Hill, New York 2002). Google Scholar
Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell95, 29–39 (1998). ArticleCASPubMed Google Scholar
Eng, C. & Parsons, R. Cowden syndrome. In The Genetic Basis of Human Cancer (ed. Kinzler, K.W.) 527–537 (McGraw Hill, New York 2002). Google Scholar
Linehan, W.M., Zbar, B. & Klausner, R.D. Renal cancer. In The Genetics Basis of Human Cancer (ed. Kinzler, K.W.) 449–474 (McGraw Hill, New York 2002). Google Scholar
Venkitaraman, A.R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell108, 171–182 (2002). ArticleCASPubMed Google Scholar
Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature411, 366–374 (2001). ArticleCASPubMed Google Scholar
Schor, S.L., Schor, A.M., Durning, P. & Rushton, G. Skin fibroblasts obtained from cancer patients display foetal-like migratory behaviour on collagen gels. J. Cell Sci.73, 235–244 (1985). CASPubMed Google Scholar
Olumi, A.F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res.59, 5002–5011 (1999). CASPubMed Google Scholar
Kurose, K. et al. Frequent somatic mutations in PTEN. and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat. Genet.32, 355–357 (2002). ArticleCASPubMed Google Scholar
Zhu, Y., Ghosh, P., Charnay, P., Burns, D.K. & Parada, L.F. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science296, 920–922 (2002). ArticleCASPubMedPubMed Central Google Scholar
Holtzman, N.A. & Marteau, T.M. Will genetics revolutionize medicine? N. Engl. J. Med.343, 141–144 (2000). ArticleCASPubMed Google Scholar
Bell, J. The new genetics in clinical practice. Br. Med. J.316, 618–620 (1998). ArticleCAS Google Scholar
Pharoah, P.D. et al. Polygenic susceptibility to breast cancer and implications for prevention. Nat. Genet.31, 33–36 (2002). ArticleCASPubMed Google Scholar
Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med.343, 78–85 (2000). ArticleCASPubMed Google Scholar
Cui, J. et al. After BRCA1 and BRCA2—what next? Multifactorial segregation analyses of three-generation, population-based Australian families affected by female breast cancer. Am. J. Hum. Genet.68, 420–31 (2001). ArticleCASPubMed Google Scholar
Antoniou, A.C. et al. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br. J. Cancer86, 76–83 (2002). ArticleCASPubMedPubMed Central Google Scholar
Peto, J. Breast cancer susceptibility—a new look at an old model. Cancer Cell1, 411–412 (2002). ArticleCASPubMed Google Scholar
Wright, A.F. & Hastie, N.D. Complex genetic diseases: controversy over the Croesus code. Genome Biol.2, COMMENT2007 (2001).
Cardon, L.R. & Bell, J.I. Association study designs for complex diseases. Nat. Rev. Genet.2, 91–99 (2001). ArticleCASPubMed Google Scholar
Botstein, D. & Rich, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet., 33, 228–237 (2003) ArticleCASPubMed Google Scholar
Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science296, 2225–2229 (2002). ArticleCASPubMed Google Scholar
Couzin, J. Genomics. New mapping project splits the community. Science296, 1391–3139 (2002). ArticleCASPubMed Google Scholar
Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet.26, 163–175 (2000). ArticleCASPubMed Google Scholar
Balmain, A. & Nagase, H. Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet.14, 139–144 (1998). ArticleCASPubMed Google Scholar
Tripodis, N., Hart, A.A., Fijneman, R.J. & Demant, P. Complexity of lung cancer modifiers: mapping of thirty genes and twenty-five interactions in half of the mouse genome. J. Natl. Cancer Inst.93, 1484–1491 (2001). ArticleCASPubMed Google Scholar
Nagase, H., Mao, J.H. & Balmain, A. A subset of skin tumor modifier loci determines survival time of tumor-bearing mice. Proc. Natl. Acad. Sci. USA96, 15032–15037 (1999). ArticleCASPubMedPubMed Central Google Scholar
Saran, A. et al. Genetics of chemical carcinogenesis: analysis of bidirectional selective breeding inducing maximal resistance or maximal susceptibility to 2-stage skin tumorigenesis in the mouse. Int. J. Cancer88, 424–431 (2000). ArticleCASPubMed Google Scholar
Fijneman, R.J., de Vries, S.S., Jansen, R.C. & Demant, P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat. Genet.14, 465–467 (1996). ArticleCASPubMed Google Scholar
van Wezel, T. et al. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nat. Genet.14, 468–470 (1996). ArticleCASPubMed Google Scholar
Nagase, H., Mao, J.H., de Koning, J.P., Minami, T. & Balmain, A. Epistatic interactions between skin tumor modifier loci in interspecific (spretus/musculus) backcross mice. Cancer Res.61, 1305–1308 (2001). CASPubMed Google Scholar
Rouse, J. & Jackson, S.P. Interfaces between the detection, signaling, and repair of DNA damage. Science297, 547–551 (2002). ArticleCASPubMed Google Scholar
Kolodner, R.D., Putnam, C.D. & Myung, K. Maintenance of genome stability in Saccharomyces cerevisiae. Science297, 552–557 (2002). ArticleCASPubMed Google Scholar
Maser, R.S. & DePinho, R.A. Connecting chromosomes, crisis, and cancer. Science297, 565–569 (2002). ArticleCASPubMed Google Scholar
Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). ArticleCASPubMed Google Scholar
Friedberg, E.C. How nucleotide excision repair protects against cancer. Nat. Rev. Cancer1, 22–33 (2001). ArticleCASPubMed Google Scholar
Ionov, Y., Peinado, M.A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature363, 558–561 (1993). ArticleCASPubMed Google Scholar
Thibodeau, S.N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science260, 816–819 (1993). ArticleCASPubMed Google Scholar
Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell75, 1227–1236 (1993). ArticleCASPubMed Google Scholar
Lynch, H.T. & de la Chapelle, A. Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet.36, 801–818 (1999). CASPubMedPubMed Central Google Scholar
Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science275, 967–969 (1997). ArticleCASPubMed Google Scholar
Parsons, R. et al. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res.55, 5548–5550 (1995). CASPubMed Google Scholar
Hastie, N.D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature346, 866–868 (1990). ArticleCASPubMed Google Scholar
Blackburn, E.H. & Challoner, P.B. Identification of a telomeric DNA sequence in Trypanosoma brucei. Cell36, 447–457 (1984). ArticleCASPubMed Google Scholar
Cahill, D.P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature392, 300–303 (1998). ArticleCASPubMed Google Scholar
Jallepalli, P.V. & Lengauer, C. Chromosome segregation and cancer: cutting through the mystery. Nat. Rev. Cancer1, 109–117 (2001). ArticleCASPubMed Google Scholar
Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer1, 55–67 (2001). ArticleCASPubMed Google Scholar
Bischoff, J.R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J.17, 3052–3065 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet.20, 189–193 (1998). ArticleCASPubMed Google Scholar
Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G.F. Abnormal centrosome amplification in the absence of p53. Science271, 1744–1747 (1996). ArticleCASPubMed Google Scholar
Frame, S. & Balmain, A. Integration of positive and negative growth signals during ras pathway activation in vivo. Curr. Opin. Genet. Dev.10, 106–113 (2000). ArticleCASPubMed Google Scholar
Marx, J. Debate surges over the origins of genomic defects in cancer. Science297, 544–546 (2002). ArticleCASPubMed Google Scholar
Jonason, A.S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl. Acad. Sci. USA93, 14025–14029 (1996). ArticleCASPubMedPubMed Central Google Scholar
Deng, G., Lu, Y., Zlotnikov, G., Thor, A.D. & Smith, H.S. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science274, 2057–2059 (1996). ArticleCASPubMed Google Scholar
Rehman, I., Quinn, A.G., Healy, E. & Rees, J.L. High frequency of loss of heterozygosity in actinic keratoses, a usually benign disease. Lancet344, 788–789 (1994). ArticleCASPubMed Google Scholar
Gong, G. et al. Genetic changes in paired atypical and usual ductal hyperplasia of the breast by comparative genomic hybridization. Clin. Cancer Res.7, 2410–2414 (2001). CASPubMed Google Scholar
Shaaban, A.M. et al. Histopathologic types of benign breast lesions and the risk of breast cancer: case-control study. Am J. Surg. Pathol.26, 421–430 (2002). ArticleCASPubMed Google Scholar
Brown, K., Strathdee, D., Bryson, S., Lambie, W. & Balmain, A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol.8, 516–524 (1998). ArticleCASPubMed Google Scholar
Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. USA85, 9138–9142 (1988). ArticleCASPubMedPubMed Central Google Scholar
Gray, J.W. & Collins, C. Genome changes and gene expression in human solid tumors. Carcinogenesis21, 443–452 (2000). ArticleCASPubMed Google Scholar
Hayashizaki, Y. et al. Restriction landmark genomic scanning method and its various applications. Electrophoresis14, 251–258 (1993). ArticleCASPubMed Google Scholar
Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science258, 818–821 (1992). ArticleCASPubMed Google Scholar
Ginzinger, D.G. et al. Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis. Cancer Res.60, 5405–5409 (2000). CASPubMed Google Scholar
Lisitsyn, N. & Wigler, M. Cloning the differences between two complex genomes. Science259, 946–951 (1993). ArticleCASPubMed Google Scholar
Zardo, G. et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet.32, 453–458 (2002). ArticleCASPubMed Google Scholar
Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270, 467–470 (1995). ArticleCASPubMed Google Scholar
Bernard, P.S. & Wittwer, C.T. Real-time PCR technology for cancer diagnostics. Clin. Chem.48, 1178–1185 (2002). CASPubMed Google Scholar
Conrads, T.P., Anderson, G.A., Veenstra, T.D., Pasa-Tolic, L. & Smith, R.D. Utility of accurate mass tags for proteome-wide protein identification. Anal Chem.72, 3349–3354 (2000). ArticleCASPubMed Google Scholar
Knezevic, V. et al. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics1, 1271–1278 (2001). ArticleCASPubMed Google Scholar
Heisterkamp, N., Stam, K., Groffen, J., de Klein, A. & Grosveld, G. Structural organization of the BCR gene and its role in the Ph′ translocation. Nature315, 758–761 (1985). ArticleCASPubMed Google Scholar
Bernardi, R., Grisendi, S. & Pandolfi, P.P. Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene21, 3445–3458 (2002). ArticleCASPubMed Google Scholar
Druker, B.J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med.344, 1038–1042 (2001). ArticleCASPubMed Google Scholar
Kallioniemi, O.P. et al. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA89, 5321–5325 (1992). ArticleCASPubMedPubMed Central Google Scholar
Vogel, C.L. et al. First-line Herceptin monotherapy in metastatic breast cancer. Oncology61 (suppl. 2), 37–42 (2001). ArticleCASPubMed Google Scholar
Lyons, J.F., Wilhelm, S., Hibner, B. & Bollag, G. Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer8, 219–225 (2001). ArticleCASPubMed Google Scholar
Jaenisch R, & Adrian, B. Epigenetic regulation: how the genome integrates intrinsic and environmental signals. Nat. Genet., 33, 245–254 (2003) ArticleCASPubMed Google Scholar
Baylin, S. & Bestor, T.H. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell1, 299–305 (2002). ArticleCASPubMed Google Scholar
Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3, 415–428 (2002). ArticleCASPubMed Google Scholar
Venkatachalam, S. et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J.17, 4657–4667 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tang, B. et al. Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency. Nat. Med.4, 802–807 (1998). ArticleCASPubMed Google Scholar
Fero, M.L., Randel, E., Gurley, K.E., Roberts, J.M. & Kemp, C.J. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature396, 177–180 (1998). ArticleCASPubMedPubMed Central Google Scholar
Inoue, K., Zindy, F., Randle, D.H., Rehg, J.E. & Sherr, C.J. Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev.15, 2934–2939 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ji, L. et al. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res.62, 2715–2720 (2002). CASPubMedPubMed Central Google Scholar
You, M. et al. Parental bias of Ki-ras oncogenes detected in lung tumors from mouse hybrids. Proc. Natl. Acad. Sci. USA89, 5804–5808 (1992). ArticleCASPubMedPubMed Central Google Scholar
Linardopoulos, S., Silva, S., Klein, G. & Balmain, A. Allele-specific loss or imbalance of chromosomes 9, 15, and 16 in B-cell tumors from interspecific F1 hybrid mice carrying Emu-c-myc or N-myc transgenes. Int. J. Cancer88, 920–927 (2000). ArticleCASPubMed Google Scholar
Hodgson, G. et al. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat. Genet.29, 459–464 (2001). ArticleCASPubMed Google Scholar
Davies, R.J. et al. Analysis of minichromosome maintenance proteins as a novel method for detection of colorectal cancer in stool. Lancet359, 1917–1919 (2002). ArticleCASPubMed Google Scholar
van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347, 1999–2009 (2002). ArticleCASPubMed Google Scholar
Albert, R., Jeong, H. & Barabasi, A.L. Error and attack tolerance of complex networks. Nature406, 378–382 (2000). ArticleCASPubMed Google Scholar