A three-dimensional view of the molecular machinery of RNA interference (original) (raw)
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Google Scholar
Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nature Rev. Mol. Cell Biol.9, 219–230 (2008). ArticleCAS Google Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). ArticleADSCASPubMed Google Scholar
Hutvagner, G. & Simard, M. J. Argonaute proteins: key players in RNA silencing. Nature Rev. Mol. Cell Biol.9, 22–32 (2008). ArticleCAS Google Scholar
Klattenhoff, C. & Theurkauf, W. Biogenesis and germline functions of piRNAs. Development135, 3–9 (2008). ArticleCASPubMed Google Scholar
Haasnoot, J., Westerhout, E. M. & Berkhout, B. RNA interference against viruses: strike and counterstrike. Nature Biotechnol.25, 1435–1443 (2007). ArticleCAS Google Scholar
Li, F. & Ding, S. W. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu. Rev. Microbiol.60, 503–531 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleADSCASPubMed Google Scholar
Nykänen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107, 309–321 (2001). ArticlePubMed Google Scholar
Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J.20, 6877–6888 (2001). ArticleCASPubMedPubMed Central Google Scholar
Macrae, I. J. & Doudna, J. A. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr. Opin. Struct. Biol.17, 138–145 (2007). ArticleCASPubMed Google Scholar
Blaszczyk, J. et al. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure9, 1225–1236 (2001). ArticleCASPubMed Google Scholar
Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell118, 57–68 (2004). This paper elegantly showed that Dicer contains a single processing centre and proposed that the two RNaseIII domains of Dicer function as an intramolecular dimer. ArticleCASPubMed Google Scholar
Gan, J. et al. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell124, 355–366 (2006). ArticleCASPubMed Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature426, 465–469 (2003). ArticleADSCASPubMed Google Scholar
Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct. Biol.10, 1026–1032 (2003). ArticleCASPubMed Google Scholar
Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science311, 195–198 (2006). This paper described the three-dimensional architecture of Dicer, revealing how Dicer functions as a molecular ruler to determine the length of its dsRNA products. ArticleADSCASPubMed Google Scholar
Macrae, I. J., Zhou, K. & Doudna, J. A. Structural determinants of RNA recognition and cleavage by Dicer. Nature Struct. Mol. Biol.14, 934–940 (2007). ArticleCAS Google Scholar
Ma, J. B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004). This paper revealed the mode of recognition of the 3′ end of siRNAs by the PAZ domain, identifying conserved residues that bind the 3′ nucleotide. ArticleADSCASPubMedPubMed Central Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Struct. Mol. Biol.11, 576–577 (2004). This paper showed that the PAZ domain provides a conserved hydrophobic binding pocket for the 3′ nucleotide of ssRNA. ArticleCAS Google Scholar
Du, Z., Lee, J. K., Tjhen, R., Stroud, R. M. & James, T. L. Structural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage. Proc. Natl Acad. Sci. USA105, 2391–2396 (2008). ArticleADSCASPubMedPubMed Central Google Scholar
Ma, E., Macrae, I. J., Kirsch, J. F. & Doudna, J. A. Autoinhibition of human Dicer by its internal helicase domain. J. Mol. Biol.380, 237–243 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jankowsky, E. & Fairman, M. E. RNA helicases — one fold for many functions. Curr. Opin. Struct. Biol.17, 316–324 (2007). ArticleCASPubMed Google Scholar
Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J.21, 5875–5885 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). ArticleADSCASPubMed Google Scholar
Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell125, 887–901 (2006). ArticleCASPubMed Google Scholar
Sohn, S. Y. et al. Crystal structure of human DGCR8 core. Nature Struct. Mol. Biol.14, 847–853 (2007). ArticleCAS Google Scholar
Farazi, T. A., Juranek, S. A. & Tuschl, T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development135, 1201–1214 (2008). ArticleCASPubMed Google Scholar
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila . Cell128, 1089–1103 (2007). ArticleCASPubMed Google Scholar
Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila . Science315, 1587–1590 (2007). ArticleADSCASPubMed Google Scholar
Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2060 (2002). ArticleADSPubMedCAS Google Scholar
Chiu, Y. L. & Rana, T. M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell10, 549–561 (2002). ArticleCASPubMed Google Scholar
Jackson, R. J. & Standart, N. How do microRNAs regulate gene expression? Sci. STKE2007, re1 (2007). ArticlePubMed Google Scholar
Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci.25, 481–482 (2000). ArticleCASPubMed Google Scholar
Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004). This paper revealed the molecular architecture of Argonaute proteins and showed that the PIWI domain resembles RNaseH, suggesting that Argonaute is the 'slicer'. ArticleADSCASPubMed Google Scholar
Nowotny, M., Gaidamakov, S. A., Crouch, R. J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell121, 1005–1016 (2005). ArticleCASPubMed Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J.23, 4727–4237 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yuan, Y. R. et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell19, 405–419 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ma, J. B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature434, 666–670 (2005). This paper revealed that the 5′ phosphate group of the guide RNA strand binds to a pocket at the interface of the MID and PIWI domains in the A. fulgidus Piwi protein and that the first nucleotide of the guide strand does not base-pair with the target RNA. ArticleADSCASPubMedPubMed Central Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). This paper showed that human AGO2 has slicer activity and that mutations in its PIWI domain, based on the structure of archaeal Argonaute, abolish RISC activityin vivo. ArticleADSCASPubMed Google Scholar
Schwarz, D. S., Tomari, Y. & Zamore, P. D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol.14, 787–791 (2004). ArticleCASPubMed Google Scholar
Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Struct. Mol. Biol.12, 340–349 (2005). ArticleCAS Google Scholar
Irvine, D. V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science313, 1134–1137 (2006). ArticleADSCASPubMed Google Scholar
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15, 185–197 (2004). ArticleCASPubMed Google Scholar
Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev.20, 2214–2222 (2006). ArticleCASPubMedPubMed Central Google Scholar
Förstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell130, 287–297 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). ArticleADSCASPubMed Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature434, 663–666 (2005). The paper revealed how the 5′ phosphate group of the guide RNA strand is recognized by Argonaute, and it highlights the importance of the seed region in mediating guide-target recognition. ArticleADSCASPubMedPubMed Central Google Scholar
Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol.11, 599–606 (2004). ArticleCAS Google Scholar
Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell133, 116–127 (2008). ArticleCASPubMedPubMed Central Google Scholar
Montgomery, T. A. et al. Specificity of ARGONAUTE7–miR390 interaction and dual functionality in _TAS3 trans_-acting siRNA formation. Cell133, 128–141 (2008). ArticleCASPubMed Google Scholar
Ohara, T. et al. The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nature Struct. Mol. Biol.14, 349–350 (2007). ArticleCAS Google Scholar
Kirino, Y. & Mourelatos, Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nature Struct. Mol. Biol.14, 347–348 (2007). ArticleCAS Google Scholar
Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). ArticleCASPubMed Google Scholar
Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev.19, 2837–2848 (2005). ArticleCASPubMedPubMed Central Google Scholar
Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell123, 607–620 (2005). ArticleCASPubMed Google Scholar
Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell123, 621–629 (2005). ArticleCASPubMed Google Scholar
Leuschner, P. J., Ameres, S. L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep.7, 314–320 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell123, 631–640 (2005). ArticleCASPubMed Google Scholar
Macrae, I. J., Ma, E., Zhou, M., Robinson, C. V. & Doudna, J. A. In vitro reconstitution of the human RISC-loading complex. Proc. Natl Acad. Sci. USA105, 512–517 (2008). ArticleADSCASPubMedPubMed Central Google Scholar
Förstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol.3, e236 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Saito, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Processing of pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLoS Biol.3, e235 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage . Cell116, 831–841 (2004). ArticleCASPubMed Google Scholar
Liu, X., Jiang, F., Kalidas, S., Smith, D. & Liu, Q. Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA12, 1514–1520 (2006). ArticleCASPubMedPubMed Central Google Scholar
Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science301, 1921–1925 (2003). ArticleADSCASPubMed Google Scholar
Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol.1, e60 (2003). ArticlePubMedPubMed Central Google Scholar
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell115, 787–798 (2003). ArticleCASPubMed Google Scholar
Wang, Y., Sheng, G., Juranek, S. A., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. Nature456, 209–213 (2008). This paper revealed that binding of the guide strand to Argonaute orders the seed region in a helical conformation, poised to initiate base-pairing with the target strand. ArticleADSCASPubMedPubMed Central Google Scholar
Pillai, R. S., Artus, C. G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA10, 1518–1525 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science317, 1764–1767 (2007). ArticleADSCASPubMed Google Scholar
Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell129, 1141–1151 (2007). ArticleCASPubMed Google Scholar
Jakymiw, A. et al. Disruption of GW bodies impairs mammalian RNA interference. Nature Cell Biol.7, 1267–1274 (2005). ArticlePubMedCAS Google Scholar
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.20, 1885–1898 (2006). ArticleCASPubMedPubMed Central Google Scholar
Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nature Cell Biol.7, 1261–1266 (2005). ArticlePubMedCAS Google Scholar
Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nature Struct. Mol. Biol.15, 346–353 (2008). ArticleCAS Google Scholar
Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nature Struct. Mol. Biol.14, 897–903 (2007). ArticleCAS Google Scholar
Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol.15, 2149–2155 (2005). ArticleCASPubMed Google Scholar
Höck, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA–protein complexes in human cells. EMBO Rep.8, 1052–1060 (2007). ArticlePubMedPubMed CentralCAS Google Scholar