Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001) ArticleCASADSPubMed Google Scholar
Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001) ArticlePubMed Google Scholar
Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell123, 607–620 (2005) ArticleCASPubMed Google Scholar
Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev.19, 2837–2848 (2005) ArticleCASPubMedPubMed Central Google Scholar
Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell123, 621–629 (2005) ArticleCASPubMed Google Scholar
Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004) ArticleCASADSPubMed Google Scholar
Yuan, Y. R. et al. Crystal structure of A.aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell19, 405–419 (2005) ArticleCASPubMedPubMed Central Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J.23, 4727–4737 (2004) ArticleCASPubMedPubMed Central Google Scholar
Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing argonaute silencing complex. Nature456, 209–213 (2008) ArticleCASADSPubMedPubMed Central Google Scholar
Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct4, 29 (2009) ArticlePubMedPubMed Central Google Scholar
Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol.15, 2149–2155 (2005) ArticleCASPubMed Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature426, 465–469 (2003) ArticleCASADSPubMed Google Scholar
Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature426, 468–474 (2003) ArticleADSPubMed Google Scholar
Ma, J. B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004) ArticleCASADSPubMedPubMed Central Google Scholar
Boland, A., Tritschler, F., Heimstadt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep.11, 522–527 (2010) ArticleCASPubMedPubMed Central Google Scholar
Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature465, 818–822 (2010) ArticleCASADSPubMed Google Scholar
Boland, A., Huntzinger, E., Schmidt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc. Natl Acad. Sci. USA108, 10466–10471 (2011) ArticleCASADSPubMedPubMed Central Google Scholar
Weinberg, D. E., Nakanishi, K., Patel, D. J. & Bartel, D. P. The inside-out mechanism of Dicers from budding yeasts. Cell146, 262–276 (2011) ArticleCASPubMedPubMed Central Google Scholar
Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Struct. Mol. Biol.12, 340–349 (2005) ArticleCAS Google Scholar
Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol.18, 758–762 (2008) ArticleCASPubMedPubMed Central Google Scholar
German, M. A. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnol.26, 941–946 (2008) ArticleCAS Google Scholar
Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J.20, 6877–6888 (2001) ArticleCASPubMedPubMed Central Google Scholar
Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol.11, 599–606 (2004) ArticleCAS Google Scholar
Ameres, S. L., Martinez, J. & Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell130, 101–112 (2007) ArticleCASPubMed Google Scholar
Förstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell130, 287–297 (2007) ArticlePubMedPubMed Central Google Scholar
Frazão, C. et al. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature443, 110–114 (2006) ArticleADSPubMed Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature434, 663–666 (2005) ArticleCASADSPubMedPubMed Central Google Scholar
Pan, Y. & MacKerell, A. D., Jr Altered structural fluctuations in duplex RNA versus DNA: a conformational switch involving base pair opening. Nucleic Acids Res.31, 7131–7140 (2003) ArticleCASPubMedPubMed Central Google Scholar
Schwarz, D. S., Hutvágner, G., Haley, B. & Zamore, P. D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell10, 537–548 (2002) ArticleCASPubMed Google Scholar
Parker, J. S., Parizotto, E. A., Wang, M., Roe, S. M. & Barford, D. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell33, 204–214 (2009) ArticleCASPubMedPubMed Central Google Scholar
Mallory, A. C. et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J.23, 3356–3364 (2004) ArticleCASPubMedPubMed Central Google Scholar
Nowotny, M., Gaidamakov, S. A., Crouch, R. J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell121, 1005–1016 (2005) ArticleCASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Crystallogr.37, 843–844 (2004) ArticleCAS Google Scholar
Collaborative Computational Project. The CCP4 suite: programs for protein crystallography. Acta Crystallogr.50, 760–763 (1994)
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991) ArticlePubMed Google Scholar
Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr.58, 1948–1954 (2002) Google Scholar
Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr.56, 1622–1624 (2000) ArticleCAS Google Scholar
Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr.54, 905–921 (1998) Article Google Scholar
DeLano, W. L. & Lam, J. W. PyMOL: A communications tool for computational models. Abstracts of Papers of the American Chemical Society230, (2005)
Grimson, A. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature455, 1193–1197 (2008) ArticleCASADSPubMed Google Scholar
Jeong, H. et al. Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J. Mol. Biol.394, 644–652 (2009) ArticleCASPubMed Google Scholar
Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols2, 31–34 (2007) ArticleCASPubMed Google Scholar
Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene156, 119–122 (1995) ArticleCASPubMed Google Scholar
Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics122, 19–27 (1989) CASPubMedPubMed Central Google Scholar
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae . Yeast14, 953–961 (1998) ArticleCASPubMed Google Scholar