Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature470, 105–109 (2011). ArticlePubMed Google Scholar
Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat. Protoc.8, 162–175 (2013). ArticleCASPubMed Google Scholar
Osakada, F., Ikeda, H., Sasai, Y. & Takahashi, M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat. Protoc.4, 811–824 (2009). ArticleCASPubMed Google Scholar
Wong, A. P. et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat. Biotechnol.30, 876–882 (2012). ArticleCASPubMedPubMed Central Google Scholar
Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature472, 51–56 (2011). ArticleCASPubMed Google Scholar
Dressler, G. R. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol.22, 509–529 (2006). ArticleCASPubMed Google Scholar
Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell18, 698–712 (2010). ArticleCASPubMedPubMed Central Google Scholar
Little, M. H. & McMahon, A. P. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol.4, a008300 (2012). ArticlePubMedPubMed Central Google Scholar
Bouchard, M., Souabni, A., Mandler, M., Neubuser, A. & Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes Dev.16, 2958–2970 (2002). ArticleCASPubMedPubMed Central Google Scholar
Carroll, T. J. & Vize, P. D. Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev. Biol.214, 46–59 (1999). ArticleCASPubMed Google Scholar
Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development133, 53–61 (2006). ArticleCASPubMed Google Scholar
Boyle, S. et al. Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev. Biol.313, 234–245 (2008). ArticleCASPubMed Google Scholar
Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell3, 169–181 (2008). ArticleCASPubMedPubMed Central Google Scholar
Batchelder, C. A., Lee, C. C., Matsell, D. G., Yoder, M. C. & Tarantal, A. F. Renal ontogeny in the rhesus monkey (Macaca mulatta) and directed differentiation of human embryonic stem cells towards kidney precursors. Differentiation78, 45–56 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bruce, S. J. et al. In vitro differentiation of murine embryonic stem cells toward a renal lineage. Differentiation75, 337–349 (2007). ArticleCASPubMed Google Scholar
Kim, D. & Dressler, G. R. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J. Am. Soc. Nephrol.16, 3527–3534 (2005). ArticleCASPubMed Google Scholar
Mae, S. et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nature Commun.4, 1367 (2013). Article Google Scholar
Narayanan, K. et al. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int.83, 593–603 (2013). ArticleCASPubMed Google Scholar
Vigneau, C. et al. Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long term into renal proximal tubules in vivo. J. Am. Soc. Nephrol.18, 1709–1720 (2007). ArticleCASPubMed Google Scholar
Hendry, C. E. et al. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J. Am. Soc. Nephrol.24, 1424–1434 (2013). ArticleCASPubMedPubMed Central Google Scholar
Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nature Methods8, 409–412 (2011). ArticleCASPubMed Google Scholar
Hendry, C., Rumballe, B., Moritz, K. & Little, M. H. Defining and redefining the nephron progenitor population. Pediatr. Nephrol.26, 1395–1406 (2011). ArticlePubMedPubMed Central Google Scholar
Kuure, S. et al. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching. Mech. Dev.122, 765–780 (2005). ArticleCASPubMed Google Scholar
Shakya, R., Watanabe, T. & Costantini, F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev. Cell8, 65–74 (2005). ArticleCASPubMed Google Scholar
Davies, J. A., Unbekandt, M., Ineson, J., Lusis, M. & Little, M. H. Dissociation of embryonic kidney followed by re-aggregation as a method for chimeric analysis. Methods Mol. Biol.886, 135–146 (2012). ArticleCASPubMed Google Scholar
Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. New Engl. J. Med.363, 1397–1409 (2010). ArticleCASPubMed Google Scholar
Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature471, 225–229 (2011). ArticleCASPubMed Google Scholar
Nagao, S., Kugita, M., Yoshihara, D. & Yamaguchi, T. Animal models for human polycystic kidney disease. Exp. Anim.61, 477–488 (2012). ArticleCASPubMed Google Scholar
Nagao, S. et al. Polycystic kidney disease in Han:SPRD Cy rats is associated with elevated expression and mislocalization of SamCystin. Am. J. Physiol. Renal. Physiol.299, F1078–F1086 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ren, X. et al. Differentiation of murine embryonic stem cells toward renal lineages by conditioned medium from ureteric bud cells in vitro. Acta Biochim. Biophys. Sin.42, 464–471 (2010). ArticleCASPubMed Google Scholar