A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells (original) (raw)
Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell133, 775–787 (2008). ArticleCASPubMed Google Scholar
Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med.15, 930–939 (2009). ArticleCASPubMedPubMed Central Google Scholar
Josefowicz, S.Z., Lu, L.F., Rudensky, A.Y. & Regulatory, T. Cells: Mechanisms of differentiation and function. Annu. Rev. Immunol.30, 531–564 (2012). ArticleCASPubMedPubMed Central Google Scholar
Curotto de Lafaille, M.A. & Lafaille, J.J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity30, 626–635 (2009). ArticleCASPubMed Google Scholar
Duarte, J.H. et al. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol.39, 948–955 (2009). ArticleCASPubMed Google Scholar
Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science323, 1488–1492 (2009). ArticleCASPubMed Google Scholar
Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol.10, 1178–1184 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol.10, 1000–1007 (2009). ArticleCASPubMedPubMed Central Google Scholar
Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. USA106, 1903–1908 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hill, J.A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity27, 786–800 (2007). ArticleCASPubMed Google Scholar
Feuerer, M., Hill, J.A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol.10, 689–695 (2009). ArticleCASPubMed Google Scholar
Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science299, 1057–1061 (2003). ArticleCASPubMed Google Scholar
Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity22, 329–341 (2005). CASPubMed Google Scholar
Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature445, 771–775 (2007). ArticleCASPubMed Google Scholar
Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol.8, 359–368 (2007). ArticleCASPubMed Google Scholar
Otsubo, K. et al. Identification of FOXP3-negative regulatory T-like (CD4+CD25+CD127low) cells in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Clin. Immunol.141, 111–120 (2011). ArticleCASPubMed Google Scholar
Sugimoto, N. et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol.18, 1197–1209 (2006). ArticleCASPubMed Google Scholar
Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature446, 685–689 (2007). ArticleCASPubMed Google Scholar
Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell126, 375–387 (2006). ArticleCASPubMed Google Scholar
Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature458, 351–356 (2009). ArticleCASPubMedPubMed Central Google Scholar
Beyer, M. et al. Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat. Immunol.12, 898–907 (2011). ArticleCASPubMedPubMed Central Google Scholar
Shi, L.Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med.208, 1367–1376 (2011). ArticleCASPubMedPubMed Central Google Scholar
Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol.10, 595–602 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y., Souabni, A., Flavell, R.A. & Wan, Y.Y. An intrinsic mechanism predisposes Foxp3-expressing regulatory T cells to Th2 conversion in vivo. J. Immunol.185, 5983–5992 (2010). ArticleCASPubMed Google Scholar
Gardner, T.S. & Faith, J.J. Reverse-engineering transcription control networks. Phys. Life Rev.2, 65–88 (2010). Article Google Scholar
Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet.37, 382–390 (2005). ArticleCASPubMed Google Scholar
Battle, A., Segal, E. & Koller, D. Probabilistic discovery of overlapping cellular processes and their regulation. J. Comput. Biol.12, 909–927 (2005). ArticleCASPubMed Google Scholar
Faith, J.J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol.5, e8 (2007). ArticlePubMedPubMed Central Google Scholar
Thornton, A.M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol.184, 3433–3441 (2010). ArticleCASPubMed Google Scholar
Yu, C. et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med.195, 1387–1395 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lee, A.H., Scapa, E.F., Cohen, D.E. & Glimcher, L.H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science320, 1492–1496 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cai, Q. et al. Helios deficiency has minimal impact on T cell development and function. J. Immunol.183, 2303–2311 (2009). ArticleCASPubMed Google Scholar
Giraud, M. et al. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc. Natl. Acad. Sci. USA109, 535–540 (2012). ArticleCASPubMed Google Scholar
Johnson, A.D. et al. λ Repressor and cro—components of an efficient molecular switch. Nature294, 217–223 (1981). ArticleCASPubMed Google Scholar
Pittenger, C. & Kandel, E. A genetic switch for long-term memory. C.R. Acad. Sci. III321, 91–96 (1998). ArticleCASPubMed Google Scholar
Iliopoulos, D., Hirsch, H.A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell139, 693–706 (2009). ArticleCASPubMedPubMed Central Google Scholar
Huehn, J., Polansky, J.K. & Hamann, A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat. Rev. Immunol.9, 83–89 (2009). ArticleCASPubMed Google Scholar
Burchill, M.A. et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity28, 112–121 (2008). CASPubMedPubMed Central Google Scholar
Hill, J.A. et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity29, 758–770 (2008). ArticleCASPubMedPubMed Central Google Scholar