- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
- Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012).
Article CAS PubMed Google Scholar
- Shin, S.C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011).
Article CAS PubMed Google Scholar
- Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723 (2004).
PubMed PubMed Central Google Scholar
- Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes linked to obesity. Nature 444, 1022–1023 (2006).
Article CAS PubMed Google Scholar
- Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).
Article PubMed CAS Google Scholar
- Hooper, L.V., Midtvedt, T. & Gordon, J.I. Host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).
Article CAS PubMed Google Scholar
- Flint, H.J., Scott, K.P., Louis, P. & Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).
Article CAS PubMed Google Scholar
- Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L. & Gordon, J.I. Human nutrition, the gut microbiome and immune system. Nature 474, 327–336 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity. Annu. Rev. Med. 62, 361–380 (2011).
Article CAS PubMed Google Scholar
- Nicholson, J.K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).
Article CAS PubMed Google Scholar
- Holmes, E., Li, J.V., Athanasiou, T., Ashrafian, H. & Nicholson, J.K. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 19, 349–359 (2011).
Article CAS PubMed Google Scholar
- Tremaroli, V. & Bächked, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).
Article CAS PubMed Google Scholar
- Hill, D.A. & Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28, 623–667 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Littman, D.R. & Pamer, E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Chinen, T. & Rudensky, A.Y. The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol. Rev. 245, 45–55 (2012).
Article CAS PubMed Google Scholar
- Honda, K. & Littman, D.R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Hooper, L.V., Littman, D.R. & Macpherson, A.J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Molloy, M.J., Bouladoux, N. & Belkaid, Y. Intestinal microbiota: shaping local and systemic immune responses. Semin. Immunol. 24, 58–66 (2012).
Article CAS PubMed Google Scholar
- Abt, M.C. & Artis, D. The dynamic influence of commensal bacteria on the immune response to pathogens. Curr. Opin. Microbiol. 16, 4–9 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Kamada, N., Seo, S., Chen, G.Y. & Núñez, G. Role of gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).
Article CAS PubMed Google Scholar
- Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenerology 140, 1729–1737 (2011).
Article CAS Google Scholar
- Wang, R. & Green, D.R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).
Article CAS PubMed Google Scholar
- Pearce, E.L. & Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Michalek, R.D. et al. Cutting Edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).
Article CAS PubMed Google Scholar
- Shi, L.Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of Th17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011). References 27 and 28 demonstrate that distinct metabolic programs critically regulate differentiation of T cell subsets.
Article CAS PubMed PubMed Central Google Scholar
- Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Donohoe, D.R., Wali, A., Brylawski, B.P. & Bultman, S.J. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian coloncytes. PLoS ONE 7, e46589 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Odegaard, J.I. & Chawla, A. The immune system as a sensor of the metabolic state. Immunity 38, 644–654 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signaling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).
Article CAS PubMed Google Scholar
- Fiorucci, S., Mencarelli, A., Palladino, G. & Cipriani, S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci. 30, 570–580 (2009).
Article CAS PubMed Google Scholar
- Ridlon, J.M., Kang, D.L. & Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).
Article CAS PubMed Google Scholar
- Trauner, M. & Boyer, J.L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671 (2003).
Article CAS PubMed Google Scholar
- Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. Bile salt hydrolase of _Bifidobacterium longum_–biochemical and genetic characterization. Appl. Environ. Microbiol. 66, 2502–2512 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Jones, B.V., Begley, M., Hill, C., Gahan, C.G. & Marchesi, J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105, 13580–13585 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Sayin, S.I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013). This article comprehensively characterizes bile acid metabolism in multiple mouse tissues and provides insight into how beneficial commensal bacteria in the intestine regulate metabolism of bile acids.
Article CAS PubMed Google Scholar
- Martin, F.P. et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).
Article PubMed PubMed Central CAS Google Scholar
- Claus, S.P. et al. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol. Syst. Biol. 4, 219 (2008).
Article PubMed PubMed Central CAS Google Scholar
- Martin, F.P. et al. Panorganismal gut microbiome-host metabolic crosstalk. J. Proteome Res. 8, 2090–2105 (2009).
Article CAS PubMed Google Scholar
- Martin, F.P. et al. Dietary modulation of gut functional ecology studied by fecal metabonomics. J. Proteome Res. 9, 5284–5295 (2010).
Article CAS PubMed Google Scholar
- Swann, J.R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci. USA 108, 4523–4530 (2011). This article comprehensively characterizes amounts of bile acid metabolites in multiple tissues of germ-free mice versus conventionally reared mice.
Article CAS PubMed Google Scholar
- Claus, S.P. et al. Colonization-induced host-gut microbial metabolic interaction. MBio 2, e00271–10 (2011). References 39–42 and 44 compare metabolite levels in multiple compartments of conventionally reared mice versus germ-free mice using metabolomic approaches.
Article PubMed PubMed Central CAS Google Scholar
- Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013).
Article CAS PubMed Google Scholar
- Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).This article demonstrates that FXR regulates intestinal inflammation in a model of IBD and provides mechanistic insight into how bile acid–FXR signaling inhibits activity of NF-κB.
Article CAS PubMed Google Scholar
- Wang, Y.D., Chen, W.D., Yu, D., Forman, B.M. & Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulated hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology 54, 1421–1432 (2011).
Article CAS PubMed Google Scholar
- Pols, T.W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14, 747–757 (2011). This article demonstrates that the bile acid receptor TGR5 attenuates atherosclerosis by decreasing macrophage-associated inflammation.
Article CAS PubMed PubMed Central Google Scholar
- Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).
Article CAS PubMed Google Scholar
- Pellicciari, R. et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009).
Article CAS PubMed Google Scholar
- David, M., Petricoin, E. III & Larner, A.C. Activation of protein kinase A inhibits interferon induction of the Jak/Stat pathway in U266 cells. J. Biol. Chem. 271, 4585–4588 (1996).
Article CAS PubMed Google Scholar
- Lee, E.H. & Rikihisa, Y. Protein kinase A-mediated inhibition of gamma interferon-induced tyrosine phosphorylation of Janus kinases and latent cytoplasmic transcription factors in human monocytes by Ehrlichia chaffeensis. Infect. Immun. 66, 2514–2520 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Wen, A.Y., Sakamoto, K.M. & Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol. 185, 6413–6419 (2010).
Article CAS PubMed Google Scholar
- Cipriani, S. et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE 6, e25637 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Gadaleta, R.M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).
Article CAS PubMed Google Scholar
- Mencarelli, A. et al. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J. Immunol. 183, 6657–6666 (2009).
Article CAS PubMed Google Scholar
- Diao, H. et al. Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 21, 539–550 (2004).
Article CAS PubMed Google Scholar
- Lenz, K. Bile acid metabolism and vitamin B12 absorption in ulcerative colitis. Scand. J. Gastroenterol. 11, 769–775 (1976).
Article CAS PubMed Google Scholar
- Rutgeerts, P., Ghoos, Y. & Vantrappen, G. Bile acid studies in patients with Crohn's colitis. Gut 20, 1072–1077 (1979).
Article CAS PubMed PubMed Central Google Scholar
- Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
Article CAS PubMed Google Scholar
- Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
Article PubMed Google Scholar
- Cani, P.D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).
Article CAS PubMed Google Scholar
- Kobayashi, M. et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 56, 239–247 (2007).
Article CAS PubMed Google Scholar
- Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
Article CAS PubMed Google Scholar
- Karlsson, F.H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).
Article PubMed CAS Google Scholar
- Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. USA 108, 4592–4598 (2011).
Article CAS PubMed Google Scholar
- Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Abt, M.C. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Ganal, S.C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).References 69 and 70 demonstrate that commensal bacteria–derived signals regulate antiviral immunity.
Article CAS PubMed Google Scholar
- Renga, B. et al. The acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLoS ONE 8, e54472 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Nijmeijer, R.M. et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS ONE 6, e23745 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).This reference demonstrates that at least some bile acids promote outgrowth of a pathogenic bacterial species in IL-10–deficient mice.
Article CAS PubMed PubMed Central Google Scholar
- Chang, K.O. et al. Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc. Natl. Acad. Sci. USA 101, 8733–8738 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Chang, K.O. & George, D.W. Bile acids promote the expression of hepatitis C virus in replicon-harboring cells. J. Virol. 81, 9633–9640 (2007). References 74 and 75 demonstrate that bile acids regulate viral replication.
Article CAS PubMed PubMed Central Google Scholar
- Miller, T.L. & Wolin, M.J. Fermentations by saccharolytic intestinal bacteria. Am. J. Clin. Nutr. 32, 164–172 (1979).
Article CAS PubMed Google Scholar
- Cummings, J.H. Fermentation in the human large intestine: evidence and implications for health. Lancet 1, 1206–1209 (1983).
Article CAS PubMed Google Scholar
- Cummings, J.H. & Macfarlane, G.T. The control and consequences of fermentation in the human colon. J. Appl. Bacteriol. 70, 443–459 (1991).
Article CAS PubMed Google Scholar
- Wong, J.M.W., de Souza, R., Kendall, C.W.C., Emam, A. & Jenkins, D.J.A. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).
Article CAS PubMed Google Scholar
- Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. & Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic, and venous blood. Gut 28, 1221–1227 (1987).
Article CAS PubMed PubMed Central Google Scholar
- Macfarlane, S. & Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72 (2003).
Article CAS PubMed Google Scholar
- Smiricky-Tjardes, M.R. et al. In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora. J. Anim. Sci. 81, 2505–2514 (2003).
Article CAS PubMed Google Scholar
- Høverstad, T. & Midtvedt, T. Short-chain fatty acids in germfree mice and rats. J. Nutr. 116, 1772–1776 (1986).
Article PubMed Google Scholar
- Donohoe, D.R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011). This article demonstrates that commensal bacteria–derived butyrate, an SCFA, is critical for maintaining metabolic homeostasis and regulating autophagy in colonocytes.
Article CAS PubMed PubMed Central Google Scholar
- Maslowski, K.M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009). This article demonstrates that commensal bacteria–derived SCFAs have an anti-inflammatory role in a model of IBD.
CAS PubMed PubMed Central Google Scholar
- Bjursell, M. et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211–E220 (2011).
Article CAS PubMed Google Scholar
- Bellahcene, M. et al. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br. J. Nutr. 109, 1755–1764 (2012).
Article PubMed CAS Google Scholar
- Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 108, 8030–8035 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Sina, C., Jiang, H.-P., Li, J, Schreiber, S. & Rosenstiel, P. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514–7522 (2009).
Article CAS PubMed Google Scholar
- Vinolo, M.A. et al. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS ONE 6, e21205 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Brown, A.J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain fatty acids. J. Biol. Chem. 278, 11312–11319 (2003).
Article CAS PubMed Google Scholar
- Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).
Article CAS PubMed Google Scholar
- Nilsson, N.E., Kotarsky, K., Owman, C. & Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052 (2003). References 91–93 provide comprehensive pharmacologic characterizations of SCFA-GPR41 and SCFA-GPR43 interactions and demonstrate that SCFAs regulate immune cells.
Article CAS PubMed Google Scholar
- Cousens, L.S., Gallwitz, D. & Alberts, B.M. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem. 254, 1716–1723 (1979).
Article CAS PubMed Google Scholar
- Donohoe, D.R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Hinnebusch, B.F., Meng, S., Wu, J.T., Archer, S.Y. & Hodin, R.A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 132, 1012–1017 (2002).
Article CAS PubMed Google Scholar
- Waldecker, M., Kautenburger, T., Daumann, H., Busch, C. & Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587–593 (2008).
Article CAS PubMed Google Scholar
- Virgin, H.W. & Levine, B. Autophagy genes in immunity. Nat. Immunol. 10, 461–470 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Hudson, B.D., Tikhonova, I.G., Pandey, S.K., Ulven, T. & Milligan, G. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J. Biol. Chem. 287, 41195–41209 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Cox, M.A. et al. Short-chain fatty acids act as anti-inflammatory mediators by regulating prostaglandin E(2) and cytokines. World J. Gastroenterol. 15, 5549–5557 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Venkatraman, A. et al. Amelioration of dextran sulfate colitis by butyrate: role of heat shock protein 70 and NF-κB. Am. J. Physiol. Gastroenterol. Liver Physiol. 285, G177–G184 (2003).
Article CAS Google Scholar
- Berndt, B.E. et al. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1384–G1392 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Liu, L. et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol. 277, 66–73 (2012).
Article CAS PubMed Google Scholar
- Eftimiadi, C. et al. Divergent effect of the anaerobic bacteria by-product butyric acid on the immune response: suppression of T-lymphocyte proliferation and stimulation of interleuking-1 beta production. Oral Microbiol. Immunol. 6, 17–23 (1991).
Article CAS PubMed Google Scholar
- Gilbert, K.M., DeLoose, A., Valentine, J.L. & Fifer, E.K. Structure-activity relationship between carboxylic acids and T cell cycle blockade. Life Sci. 78, 2159–2165 (2006).
Article CAS PubMed Google Scholar
- Bailón, E. et al. Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis. Immunobiology 215, 863–873 (2010).
Article PubMed CAS Google Scholar
- Zimmerman, M.A. et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1405–G1415 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Huang, N., Katz, J.P., Martin, D.R. & Wu, G.D. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine 9, 27–36 (1997).
Article CAS PubMed Google Scholar
- Patel, K.K. & Stappenbeck, T.S. Autophagy and intestinal homeostasis. Annu. Rev. Physiol. 75, 241–262 (2012).
- Shakespear, M.R., Halili, M.A., Irvine, K.M., Fairlie, D.P. & Sweet, M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 32, 335–343 (2011).
Article CAS PubMed Google Scholar
- Scheppach, W. et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 51–56 (1992).
Article CAS PubMed Google Scholar
- Segain, J.P. et al. Buytrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut 47, 397–403 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Resta, S.C. Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. J. Physiol. (Lond.) 587, 4169–4174 (2009).
Article CAS Google Scholar
- Bhaskaram, P. Micronutrient malnutrition, infection, and immunity: an overview. Nutr. Rev. 60, S40–S45 (2002).
Article PubMed Google Scholar
- Cheng, C.H., Chang, S.J., Lee, B.J., Lin, K.L. & Huang, Y.C. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr. 60, 1207–1213 (2006).
Article CAS PubMed Google Scholar
- Meydani, S.N. et al. Vitamin E supplementation and in vivo immune response in healthy elderly subjects: a randomized controlled trial. J. Am. Med. Assoc. 277, 1380–1386 (1997).
Article CAS Google Scholar
- Tamura, J. et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin. Exp. Immunol. 116, 28–32 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Cantorna, M.T., Zhu, Y., Froicu, M. & Wittke, A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am. J. Clin. Nutr. 80, 1717S–1720S (2004).
Article CAS PubMed Google Scholar
- Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481 (2012). This article suggests that commensal bacteria may regulate intestinal inflammation by influencing absorption of amino acids.
Article CAS PubMed PubMed Central Google Scholar
- Kunisawa, J., Hashimoto, E., Ishikawa, I. & Kiyono, H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS ONE 7, e32094 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Spencer, S.P. & Belkaid, Y. Dietary and commensal derived nutrients: shaping mucosal and systemic immunity. Curr. Opin. Immunol. 24, 379–384 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012)This article demonstrates that B-vitamin metabolites bind MR1 and promote mucosa-associated invariant T cell activation.
Article CAS PubMed Google Scholar
- Dusseaux, M. et al. Human MAIT cells are xenobiotic resistant, tissue-targeted, CD161hi IL-17 secreting T cells. Blood 117, 1250–1259 (2011).
Article CAS PubMed Google Scholar
- Walker, L.J. et al. Human MAIT cells and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 119, 422–433 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).
Article CAS PubMed Google Scholar
- Le Bourhis, L., Mburu, Y.K. & Lantz, O. MAIT cells, surveyors of a new class of antigen: development and functions. Curr. Opin. Immunol. 25, 174–180 (2013).
Article CAS PubMed Google Scholar
- Smith, M.I., et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Trehan, I. et al. Antibiotics as part of the management of severe acute malnutrition. N. Engl. J. Med. 368, 425–435 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Mestdagh, R. et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J. Proteome Res. 11, 620–630 (2012).
Article CAS PubMed Google Scholar
- Tannahill, G.M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). This article demonstrates that glucose oxidation and amounts of the citric acid cycle intermediate succinate regulate production of IL-1β.
Article CAS PubMed PubMed Central Google Scholar
- Matsumoto, M. et al. Impact of intestinal microbiota on intestinal luminal metabolome. Scientific Reports 2, 233 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Whitt, D.D. & Demoss, R.D. Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl. Microbiol. 30, 609–615 (1975).
Article CAS PubMed PubMed Central Google Scholar
- McGaha, T.L. et al. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol. Rev. 249, 135–157 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Morris, S.M. Jr. Arginases and arginine deficiency syndromes. Curr. Opin. Clin. Nutr. Metab. Care 15, 64–70 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Puccetti, P. & Grohmann, U. IDO and regulatory T cells: a role for reverse signaling and non-canonical NF-κB activation. Nat. Rev. Immunol. 7, 817–823 (2007).
Article CAS PubMed Google Scholar
- Das, P., Lahiri, A., Lahiri, A. & Chakravortty, D. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 6, e1000899 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Munn, D.H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Nowak, E.C. et al. Tryptophan hydroxylase-1 regulates immune tolerance and inflammation. J. Exp. Med. 209, 2127–2135 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Rodriguez, P.C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).
Article CAS PubMed Google Scholar
- Cobbold, S.P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. USA 106, 12055–12060 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Scrimshaw, N.S., Wilson, D. & Bressani, R. Infection and kwaszhiorkor. J. Trop. Pediatr. 6, 37–43 (1960).
Article CAS Google Scholar
- Müller, O. & Krawinkel, M. Malnutrition and health in developing countries. CMAJ 173, 279–286 (2005).
Article PubMed PubMed Central Google Scholar
- Black, R.E. et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243–260 (2008).
Article PubMed Google Scholar
- Rice, A.L., Sacco, L., Hyder, A. & Black, R.E. Malnutrition as an underlying cause of childhood deaths associated with infectious diseases in developing countries. Bull. World Health Organ. 78, 1207–1221 (2000).
CAS PubMed PubMed Central Google Scholar
- Pretorius, P.J. & De Villers, L.S. Antibody response in children with protein malnutrition. Am. J. Clin. Nutr. 10, 379–383 (1962).
Article CAS PubMed Google Scholar
- Savy, M. et al. Landscape analysis of interactions between nutrition and vaccine responses in children. J. Nutr. 139, 2154S–2218S (2009).
Article CAS PubMed Google Scholar
- Dumas, M.E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 103, 12511–12516 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Rossjohn, J., Pellicci, D.G., Patel, O., Gapin, L. & Godfrey, D.I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Wei, B. et al. Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J. Immunol. 184, 1218–1226 (2010).
Article CAS PubMed Google Scholar
- Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Kidani, Y. & Bensinger, S.J. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol. Rev. 249, 72–83 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Hong, C. et al. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest. 122, 337–347 (2012).
Article CAS PubMed Google Scholar
- Odegaard, J.I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Odegaard, J.I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Mukundan, L. et al. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15, 1266–1272 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5, 104–112 (2004).
Article CAS PubMed Google Scholar
- Are, A. et al. Enterococcus faecalis from newborn babies regulate endogenous PPARgamma activity and IL-10 levels in colonic epithelial cells. Proc. Natl. Acad. Sci. USA 105, 1943–1948 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Gerriets, V.A. & Rathmell, J.C. Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168–173 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Pearce, E.L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009). This article suggests that metabolism of fatty acids is critical for formation of CD8+ memory T cells.
Article CAS PubMed PubMed Central Google Scholar
- Ito, K. et al. PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).
Article CAS PubMed PubMed Central Google Scholar