Rudd, P.M. et al. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol.293, 351–366 (1999). ArticleCASPubMed Google Scholar
Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. & Dwek, R.A. Glycosylation and the immune system. Science291, 2370–2376 (2001). ArticleCASPubMed Google Scholar
Varki, A. et al. (eds.) Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999). Google Scholar
Crocker, P.R. & Varki, A. Siglecs, sialic acids and innate immunity. Trends Immunol.22, 337–342 (2001). ArticleCASPubMed Google Scholar
Rabinovich, G.A. et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol.23, 313–320 (2002). ArticleCASPubMed Google Scholar
Grogan, M.J., Pratt, M.R., Marcaurelle, L.A. & Bertozzi, C.R. Homogeneous glycopeptides and glycoproteins for biological investigation. Annu. Rev. Biochem.71, 593–634 (2002). ArticleCASPubMed Google Scholar
Marth, J.D. Will the transgenic mouse serve as a Rosetta Stone to glycoconjugate function? Glycocon. J.11, 3–8 (1994). ArticleCAS Google Scholar
Lowe, J.B. & Marth, J.D. Genetic approaches to carbohydrate function. Annu. Rev. Biochem. (in the press, 2003).
Despont, J.P., Abel, C.A. & Grey, H.M. Sialic acids and sialyltransferases in murine lymphoid cells: indicators of T cell maturation. Cell. Immunol.17, 487–494 (1975). ArticleCASPubMed Google Scholar
Reisner, Y., Linker-Isreali, M. & Sharon, N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell. Immunol.25, 129–134 (1976). ArticleCASPubMed Google Scholar
Pink, J.R. Changes in T-lymphocyte glycoprotein structures associated with differentiation. Contemp. Top. Mol. Immunol.9, 89–113 (1983). ArticleCASPubMed Google Scholar
Toporowicz, A. & Reisner, Y. Changes in sialyltransferase activity during murine T cell differentiation. Cell. Immunol.100, 10–19 (1986). ArticleCASPubMed Google Scholar
Lefrancois, L. Expression of carbohydrate differentiation antigens during ontogeny of the murine thymus. J. Immunol.139, 2220–2229 (1987). CASPubMed Google Scholar
Fowlkes, B.J. et al. Differential binding of fluorescein-labeled lectins to mouse thymocytes: subsets revealed by flow microfluorometry. J. Immunol.125, 623–630 (1980). CASPubMed Google Scholar
Gillespie, W., Paulson, J.C., Kelm, S., Pang, M. & Baum, L.G. Regulation of α2,3-sialyltransferase expression correlates with conversion of peanut agglutinin (PNA)+ to PNA-phenotype in developing thymocytes. J. Biol. Chem.268, 3801–3804 (1993). ArticleCASPubMed Google Scholar
Baum, L.G. et al. Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. J. Biol. Chem.271, 10793–10799 (1996). ArticleCASPubMed Google Scholar
Priatel, J.J. et al. The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity12, 273–283 (2000). ArticleCASPubMed Google Scholar
Martin, L.T., Marth, J.D., Varki, A. & Varki, N.M. Genetically altered mice with different sialyltransferase deficiencies show tissue-specific alterations in sialylation and sialic acid 9-O-acetylation. J. Biol. Chem.277, 32930–32938 (2002). ArticleCASPubMed Google Scholar
Tsuboi, S. & Fukuda, M. Roles of O-linked oligosaccharides in immune responses. Bioessays23, 46–53 (2001). ArticleCASPubMed Google Scholar
Baum, L.G. et al. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J. Exp. Med.181, 877–887 (1995). ArticleCASPubMed Google Scholar
Ellies, L.G., Tao, W., Fellinger, W., Teh, H.S. & Ziltener, H.J. The CD43 130-kD peripheral T-cell activation antigen is downregulated in thymic positive selection. Blood88, 1725–1732 (1996). ArticleCASPubMed Google Scholar
Taira, S. & Nariuchi, H. Possible role of neuraminidase in activated T cells in the recognition of allogeneic Ia. J. Immunol.141, 440–446 (1988). CASPubMed Google Scholar
Chervenak, R. & Cohen, J.J. Peanut lectin binding as a marker for activated T-lineage lymphocytes. Thymus4, 61–67 (1982). CASPubMed Google Scholar
Landolfi, N.F., Leone, J., Womack, J.E. & Cook, R.G. Activation of T lymphocytes results in an increase in H-2-encoded neuraminidase. Immunogenetics22, 159–167 (1985). ArticleCASPubMed Google Scholar
Piller, F., Piller, V., Fox, R.I. & Fukuda, M. Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J. Biol. Chem.263, 15146–15150 (1988). ArticleCASPubMed Google Scholar
Galvan, M., Murali-Krishna, K., Ming, L.L., Baum, L. & Ahmed, R. Alterations in cell surface carbohydrates on T cells from virally infected mice can distinguish effector/memory CD8+ T cells from naive cells. J. Immunol.161, 641–648 (1998). CASPubMed Google Scholar
Kaufmann, M. et al. Identification of an α2,6-sialyltransferase induced early after lymphocyte activation. Int. Immunol.11, 731–738 (1999). ArticleCASPubMed Google Scholar
Harrington, L.E., Galvan, M., Baum, L.G., Altman, J.D. & Ahmed, R. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med.191, 1241–1246 (2000). ArticleCASPubMedPubMed Central Google Scholar
Siegelman, M.H., DeGrendele, H.C. & Estess, P. Activation and interaction of CD44 and hyaluronan in immunological systems. J. Leukoc. Biol.66, 315–321 (1999). ArticleCASPubMed Google Scholar
Khan, A.A., Bose, C., Yam, L.S., Soloski, M.J. & Rupp, F. Physiological regulation of the immunological synapse by agrin. Science292, 1681–1686 (2001). ArticleCASPubMed Google Scholar
Martin, P.T. Glycobiology of the synapse. Glycobiology12, 1–7 (2002). Article Google Scholar
Trautmann, A. & Vivier, E. Immunology. Agrin–a bridge between the nervous and immune systems. Science292, 1667–1668 (2001). ArticleCASPubMed Google Scholar
Shaw, A.S. & Allen, P.M. Kissing cousins: immunological and neurological synapses. Nature Immunol.2, 575–576 (2001). ArticleCAS Google Scholar
Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J.W. Negative regulation of T-cell activation and autoimmunity by Mgat5N-glycosylation. Nature409, 733–739 (2001). ArticleCASPubMed Google Scholar
Krishna, M. & Varki, A. 9-O-Acetylation of sialomucins: a novel marker of murine CD4 T cells that is regulated during maturation and activation. J. Exp. Med.185, 1997–2013 (1997). ArticleCASPubMedPubMed Central Google Scholar
Carlow, D.A., Ardman, B. & Ziltener, H.J. A novel CD8 T cell-restricted CD45RB epitope shared by CD43 is differentially affected by glycosylation. J. Immunol.163, 1441–1448 (1999). CASPubMed Google Scholar
Blander, J.M., Visintin, I., Janeway, C.A. Jr. & Medzhitov, R. A(1,3)-fucosyltransferase VII and α(2,3)-sialyltransferase IV are up-regulated in activated CD4 T cells and maintained after their differentiation into Th1 and migration into inflammatory sites. J. Immunol.163, 3746–3752 (1999). CASPubMed Google Scholar
Lim, Y.C. et al. Expression of functional selectin ligands on Th cells is differentially regulated by IL-12 and IL-4. J. Immunol.162, 3193–3201 (1999). CASPubMed Google Scholar
Lim, Y.C. et al. IL-12, STAT4-dependent up-regulation of CD4+ T cell core 2 β-1,6-n-acetylglucosaminyltransferase, an enzyme essential for biosynthesis of P-selectin ligands. J. Immunol.167, 4476–4484 (2001). ArticleCASPubMed Google Scholar
Moody, A.M. et al. Developmentally regulated glycosylation of the CD8αβ coreceptor stalk modulates ligand binding. Cell107, 501–512 (2001). ArticleCASPubMed Google Scholar
Ellies, L.G. et al. Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity9, 881–890 (1998). ArticleCASPubMed Google Scholar
Tsuboi, S. & Fukuda, M. Branched O-linked oligosaccharides ectopically expressed in transgenic mice reduce primary T-cell immune responses. EMBO J.16, 6364–6373 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tsuboi, S. & Fukuda, M. Overexpression of branched O-linked oligosaccharides on T cell surface glycoproteins impairs humoral immune responses in transgenic mice. J. Biol. Chem.273, 30680–30687 (1998). ArticleCASPubMed Google Scholar
Schwientek, T. et al. Control of O-glycan branch formation. Molecular cloning and characterization of a novel thymus-associated core 2 β1, 6-n-acetylglucosaminyltransferase. J. Biol. Chem.275, 11106–11113 (2000). ArticleCASPubMed Google Scholar
Yeh, J.C., Ong, E. & Fukuda, M. Molecular cloning and expression of a novel β-1, 6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem.274, 3215–3221 (1999). ArticleCASPubMed Google Scholar
Chen, X.P., Enioutina, E.Y. & Daynes, R.A. The control of IL-4 gene expression in activated murine T lymphocytes: a novel role for neu-1 sialidase. J. Immunol.158, 3070–3080 (1997). CASPubMed Google Scholar
Chen, X.P., Ding, X. & Daynes, R.A. Ganglioside control over IL-4 priming and cytokine production in activated T cells. Cytokine12, 972–985 (2000). ArticleCASPubMed Google Scholar
Womack, J.E., Yan, D.L. & Potier, M. Gene for neuraminidase activity on mouse chromosome 17 near h-2: pleiotropic effects on multiple hydrolases. Science212, 63–65 (1981). ArticleCASPubMed Google Scholar
Rottier, R.J., Bonten, E. & d'Azzo, A. A point mutation in the neu-1 locus causes the neuraminidase defect in the SM/J mouse. Hum. Mol. Genet.7, 313–321 (1998). ArticleCASPubMed Google Scholar
Oh, S. & Eichelberger, M.C. Polarization of allogeneic T-cell responses by influenza virus-infected dendritic cells. J. Virol.74, 7738–7744 (2000). ArticleCASPubMedPubMed Central Google Scholar
Todeschini, A.R. et al. Costimulation of host T lymphocytes by a trypanosomal trans-sialidase: involvement of CD43 signaling. J. Immunol.168, 5192–5198 (2002). ArticleCASPubMed Google Scholar
Penninger, J.M., Irie-Sasaki, J., Sasaki, T. & Oliveira-dos-Santos, A.J. CD45: new jobs for an old acquaintance. Nature Immunol.2, 389–396 (2001). ArticleCAS Google Scholar
Janeway, C.A. Jr. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu. Rev. Immunol.10, 645–674 (1992). ArticleCASPubMed Google Scholar
Luqman, M. & Bottomly, K. Activation requirements for CD4+ T cells differing in CD45R expression. J. Immunol.149, 2300–2306 (1992). CASPubMed Google Scholar
Chui, D., Ong, C.J., Johnson, P., Teh, H.S. & Marth, J.D. Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J.13, 798–807 (1994). ArticleCASPubMedPubMed Central Google Scholar
Leitenberg, D., Boutin, Y., Lu, D.D. & Bottomly, K. Biochemical association of CD45 with the T cell receptor complex: regulation by CD45 isoform and during T cell activation. Immunity10, 701–711 (1999). ArticleCASPubMed Google Scholar
Majeti, R., Bilwes, A.M., Noel, J.P., Hunter, T. & Weiss, A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science279, 88–91 (1998). ArticleCASPubMed Google Scholar
Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell103, 1059–1070 (2000). ArticleCASPubMed Google Scholar
Xu, Z. & Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nature Immunol.3, 764–771 (2002). ArticleCAS Google Scholar
Wu, W., Harley, P.H., Punt, J.A., Sharrow, S.O. & Kearse, K.P. Identification of CD8 as a peanut agglutinin (PNA) receptor molecule on immature thymocytes. J. Exp. Med.184, 759–764 (1996). ArticleCASPubMed Google Scholar
Baldwin, T.A. & Ostergaard, H.L. Developmentally regulated changes in glucosidase II association with, and carbohydrate content of, the protein tyrosine phosphatase CD45. J. Immunol.167, 3829–3835 (2001). ArticleCASPubMed Google Scholar
Nguyen, J.T. et al. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J. Immunol.167, 5697–5707 (2001). ArticleCASPubMed Google Scholar
Hennet, T., Chui, D., Paulson, J.C. & Marth, J.D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl. Acad. Sci. USA95, 4504–4509 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fouillit, M. et al. Regulation of CD45-induced signaling by galectin-1 in Burkitt lymphoma B cells. Glycobiology10, 413–419 (2000). ArticleCASPubMed Google Scholar
Dornan, S. et al. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J. Biol. Chem.277, 1912–1918 (2002). ArticleCASPubMed Google Scholar
Kishimoto, H. & Sprent, J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med.190, 65–73 (1999). ArticleCASPubMedPubMed Central Google Scholar
Higgins, E.A., Siminovitch, K.A., Zhuang, D.L., Brockhausen, I. & Dennis, J.W. Aberrant O-linked oligosaccharide biosynthesis in lymphocytes and platelets from patients with the Wiskott-Aldrich syndrome. J. Biol. Chem.266, 6280–6290 (1991). ArticleCASPubMed Google Scholar
Ellies, L.G., Jones, A.T., Williams, M.J. & Ziltener, H.J. Differential regulation of CD43 glycoforms on CD4+ and CD8+ T lymphocytes in graft-_versus_-host disease. Glycobiology4, 885–893 (1994). ArticleCASPubMed Google Scholar
Jones, A.T. et al. Characterization of the activation-associated isoform of CD43 on murine T lymphocytes. J. Immunol.153, 3426–3439 (1994). CASPubMed Google Scholar
Manjunath, N., Correa, M., Ardman, M. & Ardman, B. Negative regulation of T-cell adhesion and activation by CD43. Nature377, 535–538 (1995). ArticleCASPubMed Google Scholar
Ostberg, J.R., Barth, R.K. & Frelinger, J.G. The Roman god Janus: a paradigm for the function of CD43. Immunol. Today19, 546–550 (1998). ArticleCASPubMed Google Scholar
He, Y.W. & Bevan, M.J. High level expression of CD43 inhibits T cell receptor/CD3-mediated apoptosis. J. Exp. Med.190, 1903–1908 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sperling, A.I. et al. CD43 is a murine T cell costimulatory receptor that functions independently of CD28. J. Exp. Med.182, 139–146 (1995). ArticleCASPubMed Google Scholar
Sperling, A.I. et al. TCR signaling induces selective exclusion of CD43 from the T cell-antigen-presenting cell contact site. J. Immunol.161, 6459–6462 (1998). CASPubMed Google Scholar
Stockton, B.M., Cheng, G., Manjunath, N., Ardman, B. & von Andrian, U.H. Negative regulation of T cell homing by CD43. Immunity8, 373–381 (1998). ArticleCASPubMed Google Scholar
Onami, T.M. et al. Dynamic regulation of T cell immunity by CD43. J. Immunol.168, 6022–6031 (2002). ArticleCASPubMed Google Scholar
Carlow, D.A., Corbel, S.Y. & Ziltener, H.J. Absence of CD43 fails to alter T cell development and responsiveness. J. Immunol.166, 256–261 (2001). ArticleCASPubMed Google Scholar
Allenspach, E.J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity15, 739–750 (2001). ArticleCASPubMed Google Scholar
Delon, J., Kaibuchi, K. & Germain, R.N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity15, 691–701 (2001). ArticleCASPubMed Google Scholar
Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity15, 715–728 (2001). ArticleCASPubMed Google Scholar
van den Berg, T.K. et al. Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J. Immunol.166, 3637–3640 (2001). ArticleCASPubMed Google Scholar
Cyster, J.G., Shotton, D.M. & Williams, A.F. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J.10, 893–902 (1991). ArticleCASPubMedPubMed Central Google Scholar
Fukuda, M. & Carlsson, S.R. Leukosialin, a major sialoglycoprotein on human leukocytes as differentiation antigens. Med. Biol.64, 335–343 (1986). CASPubMed Google Scholar
Shaw, A.S. & Dustin, M.L. Making the T cell receptor go the distance: A topological view of T cell activation. Immunity6, 361–369 (1997). ArticleCASPubMed Google Scholar
Casabo, L.G., Mamalaki, C., Kioussis, D. & Zamoyska, R. T cell activation results in physical modification of the mouse CD8β chain. J. Immunol.152, 397–404 (1994). CASPubMed Google Scholar
Daniels, M.A. et al. CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity15, 1051–1061 (2001). ArticleCASPubMed Google Scholar
O'Rourke, A.M. & Mescher, M.F. The roles of CD8 in cytotoxic T lymphocyte function. Immunol. Today14, 183–188 (1993). ArticleCASPubMed Google Scholar
Nakayama, T. et al. Inhibition of T cell receptor expression and function in immature CD4+CD8+ cells by CD4. Science249, 1558–1561 (1990). ArticleCASPubMed Google Scholar
Wiest, D.L. et al. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med.178, 1701–1712 (1993). ArticleCASPubMed Google Scholar
Baldwin, K.K., Trenchak, B.P., Altman, J.D. & Davis, M.M. Negative selection of T cells occurs throughout thymic development. J. Immunol.163, 689–698 (1999). CASPubMed Google Scholar
Gascoigne, N.R. T-cell differentiation: MHC class I's sweet tooth lost on maturity. Curr. Biol.12, 99–101 (2002). Article Google Scholar
Deck, M.B., Sjolin, P., Unanue, E.R. & Kihlberg, J. MHC-restricted, glycopeptide-specific T cells show specificity for both carbohydrate and peptide residues. J. Immunol.162, 4740–4744 (1999). CASPubMed Google Scholar
Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nature Rev. Immunol.2, 557–568 (2002). ArticleCAS Google Scholar
Pihlgren, M., Dubois, P.M., Tomkowiak, M., Sjogren, T. & Marvel, J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med.184, 2141–2151 (1996). ArticleCASPubMedPubMed Central Google Scholar
Davey, G.M. et al. Pre-selection thymocytes are more sensitive to TCR stimulation than mature T cells. J. Exp. Med.188, 1867–1874 (1998). ArticleCASPubMedPubMed Central Google Scholar
Curtsinger, J.M., Lins, D.C. & Mescher, M.F. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C−) to TCR/CD8 signaling in response to antigen. J. Immunol.160, 3236–3243 (1998). CASPubMed Google Scholar
Lucas, B., Stefanova, I., Yasutomo, K., Dautigny, N. & Germain, R.N. Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity10, 367–376 (1999). ArticleCASPubMed Google Scholar
Knop, J. Effect of Vibrio cholerae neuraminidase on the mitogen response of T lymphocytes. I. Enhancement of macrophage T-lymphocyte cooperation in concanavalin-A-induced lymphocyte activation. Immunobiology157, 474–485 (1980). ArticleCASPubMed Google Scholar
Cullen, S.E., Kindle, C.S., Shreffler, D.C. & Cowing, C. Differential glycosylation of murine B cell and spleen adherent cell Ia antigens. J. Immunol.127, 1478–1484 (1981). CASPubMed Google Scholar
Cowing, C. & Chapdelaine, J.M. T cells discriminate between Ia antigens expressed on allogeneic accessory cells and B cells: a potential function for carbohydrate side chains on Ia molecules. Proc. Natl. Acad. Sci. USA80, 6000–6004 (1983). ArticleCASPubMedPubMed Central Google Scholar
Hunig, T. The role of accessory cells in polyclonal T cell activation II. Induction of interleukin 2 responsiveness requires cell-cell contact. Eur J. Immunol.13, 596–601 (1983). ArticleCASPubMed Google Scholar
Boog, C.J., Neefjes, J.J., Boes, J., Ploegh, H.L. & Melief, C.J. Specific immune responses restored by alteration in carbohydrate chains of surface molecules on antigen-presenting cells. Eur J. Immunol.19, 537–542 (1989). ArticleCASPubMed Google Scholar
Powell, L.D., Whiteheart, S.W. & Hart, G.W. Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction. J. Immunol.139, 262–270 (1987). CASPubMed Google Scholar
Sprent, J. & Schaefer, M. Antigen-presenting cells for CD8+ T cells. Immunol. Rev.117, 213–234 (1990). ArticleCASPubMed Google Scholar
Snapp, K.R., Heitzig, C.E., Ellies, L.G., Marth, J.D. & Kansas, G.S. Differential requirements for the O-linked branching enzyme core 2 β1-6-N-glucosaminyltransferase in biosynthesis of ligands for E-selectin and P-selectin. Blood97, 3806–3811 (2001). ArticleCASPubMed Google Scholar
Sperandio, M. et al. Severe impairment of leukocyte rolling in venules of core 2 glucosaminyltransferase-deficient mice. Blood97, 3812–3819 (2001). ArticleCASPubMed Google Scholar
Yeh, J.C. et al. Novel sulfated lymphocyte homing receptors and their control by a Core1 extension β1,3-_N_-acetylglucosaminyltransferase. Cell105, 957–969 (2001). ArticleCASPubMed Google Scholar
Smithson, G. et al. Fuc-TVII is required for T helper 1 and T cytotoxic 1 lymphocyte selectin ligand expression and recruitment in inflammation, and together with Fuc-TIV regulates naive T cell trafficking to lymph nodes. J. Exp. Med.194, 601–614 (2001). ArticleCASPubMedPubMed Central Google Scholar
Homeister, J.W. et al. The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity15, 115–126 (2001). ArticleCASPubMed Google Scholar
Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell86, 643–653 (1996). ArticleCASPubMed Google Scholar
Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity12, 665–676 (2000). ArticleCASPubMed Google Scholar
Wagers, A.J., Waters, C.M., Stoolman, L.M. & Kansas, G.S. Interleukin 12 and interleukin 4 control T cell adhesion to endothelial selectins through opposite effects on α1,3-fucosyltransferase VII gene expression. J. Exp. Med.188, 2225–2231 (1998). ArticleCASPubMedPubMed Central Google Scholar
Carlow, D.A., Corbel, S.Y., Williams, M.J. & Ziltener, H.J. IL-2, -4, and -15 differentially regulate O-glycan branching and P-selectin ligand formation in activated CD8 T cells. J. Immunol.167, 6841–6848 (2001). ArticleCASPubMed Google Scholar
Wagers, A.J. & Kansas, G.S. Potent induction of α(1,3)-fucosyltransferase VII in activated CD4+ T cells by TGF-β 1 through a p38 mitogen-activated protein kinase-dependent pathway. J. Immunol.165, 5011–5016 (2000). ArticleCASPubMed Google Scholar
Cornall, R.J., Goodnow, C.C. & Cyster, J.G. Regulation of B cell antigen receptor signaling by the Lyn/CD22/SHP1 pathway. Curr. Top. Microbiol. Immunol.244, 57–68 (1999). CASPubMed Google Scholar
Jin, L., McLean, P.A., Neel, B.G. & Wortis, H.H. Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J. Exp. Med.195, 1199–1205 (2002). ArticleCASPubMedPubMed Central Google Scholar
Razi, N. & Varki, A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc. Natl. Acad. Sci. USA95, 7469–7474 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kelm, S., Gerlach, J., Brossmer, R., Danzer, C.P. & Nitschke, L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J. Exp. Med.195, 1207–1213 (2002). ArticleCASPubMedPubMed Central Google Scholar
Scholler, N., Hayden-Ledbetter, M., Hellstrom, K.E., Hellstrom, I. & Ledbetter, J.A. CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J. Immunol.166, 3865–3872 (2001). ArticleCASPubMed Google Scholar
Cramer, S.O. et al. Activation-induced expression of murine CD83 on T cells and identification of a specific CD83 ligand on murine B cells. Int. Immunol.12, 1347–1351 (2000). ArticleCASPubMed Google Scholar
Lechmann, M. et al. The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J. Exp. Med.194, 1813–1821 (2001). ArticleCASPubMedPubMed Central Google Scholar
Scholler, N. et al. Cutting edge: CD83 regulates the development of cellular immunity. J. Immunol.168, 2599–2602 (2002). ArticleCASPubMed Google Scholar
Fujimoto, Y. et al. CD83 expression influences CD4+ T cell development in the thymus. Cell108, 755–767 (2002). ArticleCASPubMed Google Scholar
Perillo, N.L., Pace, K.E., Seilhamer, J.J. & Baum, L.G. Apoptosis of T cells mediated by galectin-1. Nature378, 736–739 (1995). ArticleCASPubMed Google Scholar
Perillo, N.L., Uittenbogaart, C.H., Nguyen, J.T. & Baum, L.G. Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J. Exp. Med.185, 1851–1858 (1997). ArticleCASPubMedPubMed Central Google Scholar
Vespa, G.N. et al. Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. J. Immunol.162, 799–806 (1999). CASPubMed Google Scholar
Chung, C.D., Lewis, L.A. & Miceli, M.C. T cell antigen receptor-induced IL-2 production and apoptosis have different requirements for Lck activities. J. Immunol.159, 1758–1766 (1997). CASPubMed Google Scholar
Wada, J., Ota, K., Kumar, A., Wallner, E.I. & Kanwar, Y.S. Developmental regulation, expression, and apoptotic potential of galectin-9, a β-galactoside binding lectin. J. Clin. Invest.99, 2452–2461 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dennis, J.W., Warren, C.E., Granovsky, M. & Demetriou, M. Genetic defects in N-glycosylation and cellular diversity in mammals. Curr. Opin. Struct. Biol.11, 601–607 (2001). ArticleCASPubMed Google Scholar
Poirier, F. & Robertson, E.J. Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development119, 1229–1236 (1993). ArticleCASPubMed Google Scholar
Colnot, C., Fowlis, D., Ripoche, M.A., Bouchaert, I. & Poirier, F. Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev. Dyn.211, 306–313 (1998). ArticleCASPubMed Google Scholar
Hsu, D.K. et al. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am. J. Pathol.156, 1073–1083 (2000). ArticleCASPubMedPubMed Central Google Scholar