The genetics of malignant melanoma: lessons from mouse and man (original) (raw)
Norris, W. A case of fungoid disease. Edinburgh Medicine and Surgery16, 562–565 (1820). Google Scholar
Armstrong, B. K. & Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B.63, 8–18 (2001). ArticleCASPubMed Google Scholar
Gilchrest, B. A., Eller, M. S., Geller, A. C. & Yaar, M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med.340, 1341–1348 (1999). ArticleCASPubMed Google Scholar
Marrett, L. D., Nguyen, H. L. & Armstrong, B. K. Trends in the incidence of cutaneous malignant melanoma in New South Wales, 1983–1996. Int. J. Cancer92, 457–462 (2001). ArticleCASPubMed Google Scholar
Fountain, J. W., Bale, S. J., Housman, D. E. & Dracopoli, N. C. Genetics of melanoma. Cancer Surv.9, 645–671 (1990). CASPubMed Google Scholar
Nobori, T. et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature368, 753–756 (1994). ArticleCASPubMed Google Scholar
Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science264, 436–440 (1994). References 6 and 7 identifiedCDKN2Aas the tumour-suppressor gene deleted at the 9p21 cancer hot spot. ArticleCASPubMed Google Scholar
Hussussian, C. J. et al. Germline p16 mutations in familial melanoma. Nature Genet.8, 15–21 (1994). ArticleCASPubMed Google Scholar
Kamb, A. et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet.8, 23–26 (1994). References 8 and 9 were the first to report germline mutation ofCDKN2Ain familial-melanoma kindred, linking cell-cycle dysregulation to hereditary cancer predisposition. ArticleCASPubMed Google Scholar
Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell83, 993–1000 (1995). This paper reports the discovery of an alternative product, ARF, at theCDKN2Alocus, which negatively regulates the cell cycle with a mechanism that is distinct from that of the cyclin-dependent kinase inhibitor INK4A. ArticleCASPubMed Google Scholar
Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature366, 704–707 (1993). ArticleCASPubMed Google Scholar
Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA95, 8292–8297 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell92, 713–723 (1998). ArticleCASPubMed Google Scholar
Stott, F. J. et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J.17, 5001–5014 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell92, 725–734 (1998). References 13 to 16 report the elucidation of the biochemical link between ARF and p53 via its interaction with MDM2. ArticleCASPubMed Google Scholar
Glendening, J. M. et al. Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. Cancer Res.55, 5531–5535 (1995). CASPubMed Google Scholar
Aitken, J. et al. CDKN2A variants in a population-based sample of Queensland families with melanoma. J. Natl Cancer Inst.91, 446–452 (1999). ArticleCASPubMed Google Scholar
Tsao, H. et al. Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch. Dermatol.136, 1118–1122 (2000). ArticleCASPubMed Google Scholar
Liu, L. et al. Mutation of the CDKN2A 5' UTR creates an aberrant initiation codon and predisposes to melanoma. Nature Genet.21, 128–132 (1999). ArticlePubMedCAS Google Scholar
Kumar, R. et al. A single nucleotide polymorphism in the 3′ untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare. Int. J. Cancer95, 388–393 (2001). ArticleCASPubMed Google Scholar
Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science269, 1281–1284 (1995). ArticleCASPubMed Google Scholar
Zuo, L. et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Genet.12, 97–99 (1996). ArticleCASPubMed Google Scholar
Soufir, N. et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet.7, 209–216 (1998). ArticleCASPubMed Google Scholar
Tsao, H., Benoit, E., Sober, A. J., Thiele, C. & Haluska, F. G. Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Res.58, 109–113 (1998). References 22 to 25 report the finding of R24 mutations in familial and sporadic human melanomas that render CDK4 insensitive to regulation by INK4A. CASPubMed Google Scholar
Russo, A. A., Tong, L., Lee, J. O., Jeffrey, P. D. & Pavletich, N. P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature395, 237–243 (1998). ArticleCASPubMed Google Scholar
Goldstein, A. M., Struewing, J. P., Chidambaram, A., Fraser, M. C. & Tucker, M. A. Genotype–phenotype relationships in U. S. melanoma-prone families with CDKN2A and CDK4 mutations. J. Natl Cancer Inst.92, 1006–1010 (2000). ArticleCASPubMed Google Scholar
Sotillo, R. et al. Invasive melanoma in Cdk4-targeted mice. Proc. Natl Acad. Sci. USA98, 13312–13317 (2001). This study recapitulates the melanoma-prone effect of theCdk4R24C mutation in a mouse model. ArticleCASPubMedPubMed Central Google Scholar
Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta1378, F115–F177 (1998). CASPubMed Google Scholar
Piccinin, S. et al. p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression. Int. J. Cancer74, 26–30 (1997). ArticleCASPubMed Google Scholar
Straume, O., Smeds, J., Kumar, R., Hemminki, K. & Akslen, L. A. Significant impact of promoter hypermethylation and the 540 C→T polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase. Am. J. Pathol.161, 229–237 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kumar, R., Sauroja, I., Punnonen, K., Jansen, C. & Hemminki, K. Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer23, 273–277 (1998). Google Scholar
Randerson-Moor, J. A. et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma–neural system tumour syndrome family. Hum. Mol. Genet.10, 55–62 (2001). ArticleCASPubMed Google Scholar
Rizos, H. et al. A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene20, 5543–5547 (2001). References 33 and 34 identified germlineARFmutations in human melanoma patients. ArticleCASPubMed Google Scholar
Duro, D., Bernard, O., Della Valle, V., Berger, R. & Larsen, C. J. A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene11, 21–29 (1995). CASPubMed Google Scholar
Mao, L. et al. A novel p16INK4a transcript. Cancer Res.55, 2995–2997 (1995). CASPubMed Google Scholar
Stone, S. et al. Complex structure and regulation of the p16(MTS1) locus. Cancer Res.55, 2988–2994 (1995). References 35 to 37, as well as reference 11, describe the conserved genomic organization of theCDKN2Alocus from opossum to man. CASPubMed Google Scholar
Sherburn, T. E., Gale, J. M. & Ley, R. D. Cloning and characterization of the CDKN2A and p19ARF genes from Monodelphis domestica. DNA Cell Biol.17, 975–981 (1998). ArticleCASPubMed Google Scholar
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell85, 27–37 (1996). ArticleCASPubMed Google Scholar
Chin, L. et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev.11, 2822–2834 (1997). References 40 and 41 provide genetic proof in the mouse that theCdkn2alocus functions as abona fidetumour suppressor, specifically of melanoma,in vivo. ArticleCASPubMedPubMed Central Google Scholar
Yang, F. C., Merlino, G. & Chin, L. Genetic dissection of melanoma pathways in the mouse. Semin. Cancer Biol.11, 261–268 (2001). ArticleCASPubMed Google Scholar
Bradl, M., Klein-Szanto, A., Porter, S. & Mintz, B. Malignant melanoma in transgenic mice. Proc. Natl Acad. Sci. USA88, 164–168 (1991). ArticleCASPubMedPubMed Central Google Scholar
Ross, D. A. & Wilson, G. D. Expression of c-myc oncoprotein represents a new prognostic marker in cutaneous melanoma. Br. J. Surg.85, 46–51 (1998). ArticleCASPubMed Google Scholar
Kraehn, G. M. et al. Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Br. J. Cancer84, 72–79 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev.13, 2670–2677 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sharpless, N. E. et al. p16INK4a and p53 deficiency cooperate in tumorigenesis. Cancer Res.62, 2761–2765 (2002). CASPubMed Google Scholar
Krimpenfort, P., Quon, K. C., Mooi, W. J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature413, 83–86 (2001). ArticleCASPubMed Google Scholar
Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature413, 86–91 (2001). References 50 and 51 show that Ink4a functions as a tumour suppressor in the mouse, as it does in humans. ArticleCASPubMed Google Scholar
Sharpless, N. E. et al. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene (in the press).
Valverde, P., Healy, E., Jackson, I., Rees, J. L. & Thody, A. J. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nature Genet.11, 328–330 (1995). ArticleCASPubMed Google Scholar
Sturm, R. A. Skin colour and skin cancer: MC1R, the genetic link. Melanoma Res.12, 405–416 (2002). ArticleCASPubMed Google Scholar
Box, N. F., Wyeth, J. R., O'Gorman, L. E., Martin, N. G. & Sturm, R. A. Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum. Mol. Genet.6, 1891–1897 (1997). ArticleCASPubMed Google Scholar
Smith, R. et al. Melanocortin 1 receptor variants in an Irish population. J. Invest. Dermatol.111, 119–122 (1998). ArticleCASPubMed Google Scholar
Flanagan, N. et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum. Mol. Genet.9, 2531–2537 (2000). ArticleCASPubMed Google Scholar
Palmer, J. S. et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am. J. Hum. Genet.66, 176–186 (2000). ArticleCASPubMed Google Scholar
Bastiaens, M. et al. The melanocortin-1-receptor gene is the major freckle gene. Hum. Mol. Genet.10, 1701–1708 (2001). ArticleCASPubMed Google Scholar
Box, N. F. et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am. J. Hum. Genet.69, 765–773 (2001). ArticleCASPubMedPubMed Central Google Scholar
Healy, E. et al. Melanocortin-1-receptor gene and sun sensitivity in individuals without red hair. Lancet355, 1072–1073 (2000). ArticleCASPubMed Google Scholar
Busca, R. & Ballotti, R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res.13, 60–69 (2000). ArticleCASPubMed Google Scholar
Wildlund, H. R. & Fisher, D. E. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene22, 3035–3041 (2003). ArticleCAS Google Scholar
Harsanyi, Z. P., Post, P. W., Brinkmann, J. P., Chedekel, M. R. & Deibel, R. M. Mutagenicity of melanin from human red hair. Experientia36, 291–292 (1980). ArticleCASPubMed Google Scholar
Scott, M. C. et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J. Cell Sci.115, 2349–2355 (2002). ArticleCASPubMed Google Scholar
Kennedy, C. et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J. Invest. Dermatol.117, 294–300 (2001). ArticleCASPubMed Google Scholar
van der Velden, P. A. et al. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am. J. Hum. Genet.69, 774–779 (2001). ArticleCASPubMedPubMed Central Google Scholar
Johnson, G. L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science298, 1911–1912 (2002). ArticleCASPubMed Google Scholar
Yanase, H. et al. Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res.14, 103–109 (2001). ArticleCASPubMed Google Scholar
Busca, R. et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J.19, 2900–2910 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lowes, V. L., Ip, N. Y. & Wong, Y. H. Integration of signals from receptor tyrosine kinases and g protein-coupled receptors. Neurosignals11, 5–19 (2002). ArticleCASPubMed Google Scholar
Imokawa, G., Yada, Y. & Miyagishi, M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J. Biochem.267, 24675–24680 (1992). CAS Google Scholar
Gilchrest, B. A., Park, H. Y., Eller, M. S. & Yaar, M. Mechanisms of ultraviolet light-induced pigmentation. Photochem. Photobiol.63, 1–10 (1996). ArticleCASPubMed Google Scholar
Tada, A. et al. Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth Differ.9, 575–584 (1998). CASPubMed Google Scholar
Nesbit, M. et al. Basic fibroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene18, 6469–6476 (1999). ArticleCASPubMed Google Scholar
Dupin, E. & Le Douarin, N. M. Development of melanocyte precursors from the vertebrate neural crest. Oncogene22, 3016–3023 (2003). ArticleCASPubMed Google Scholar
Jafari, M. et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J. Cancer Res. Clin. Oncol.121, 23–30 (1995). ArticleCASPubMed Google Scholar
van Elsas, A. et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am. J. Pathol.149, 883–893 (1996). CASPubMedPubMed Central Google Scholar
Papp, T. et al. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi. J. Med. Genet.36, 610–614 (1999). CASPubMedPubMed Central Google Scholar
Demunter, A., Stas, M., Degreef, H., De Wolf-Peeters, C. & van den Oord, J. J. Analysis of _N_- and K-ras mutations in the distinctive tumor progression phases of melanoma. J. Invest. Dermatol.117, 1483–1489 (2001). ArticleCASPubMed Google Scholar
Albino, A. P. et al. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene4, 1363–1374 (1989). CASPubMed Google Scholar
Papp, T. et al. Mutational analysis of N–ras, p53, CDKN2A (p16(INK4a)), p14(ARF), CDK4, and MC1R genes in human dysplastic melanocytic naevi. J. Med. Genet.40, E14 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bastian, B. C. et al. Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res.60, 1968–1973 (2000). CASPubMed Google Scholar
Powell, M. B. et al. Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Mol. Carcinog.12, 82–90 (1995). ArticleCASPubMed Google Scholar
Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002). This is a seminal study that not only identifiesBRAFas a frequently mutated gene in human cancers, particularly in melanoma, but also serves as the proof-of-principle demonstration of the power of genome sequencing as a gene-discovery platform. ArticleCASPubMed Google Scholar
Rajagopalan, H. et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature418, 934 (2002). ArticleCASPubMed Google Scholar
Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet.33, 19–20 (2003). ArticleCASPubMed Google Scholar
Cohen, C. et al. Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin. Cancer Res.8, 3728–3733 (2002). CASPubMed Google Scholar
Bottaro, D. P. et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science251, 802–804 (1991). ArticleCASPubMed Google Scholar
Vande Woude, G. F. et al. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found. Symp.212, 119–130 (1997). CASPubMed Google Scholar
Li, G. et al. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene20, 8125–8135 (2001). ArticleCASPubMed Google Scholar
Halaban, R. et al. Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene7, 2195–2206 (1992). CASPubMed Google Scholar
Natali, P. G. et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br. J. Cancer68, 746–750 (1993). ArticleCASPubMedPubMed Central Google Scholar
Wiltshire, R. N. et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res.55, 3954–3957 (1995). CASPubMed Google Scholar
Bastian, B. C., LeBoit, P. E., Hamm, H., Brocker, E. B. & Pinkel, D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res.58, 2170–2175 (1998). CASPubMed Google Scholar
Rusciano, D., Lorenzoni, P. & Burger, M. M. Expression of constitutively activated hepatocyte growth factor/scatter factor receptor (c-met) in B16 melanoma cells selected for enhanced liver colonization. Oncogene11, 1979–1987 (1995). CASPubMed Google Scholar
Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res.58, 5157–5167 (1998). CASPubMed Google Scholar
Wu, H., Goel, V. & Haluska, F. G. PTEN signaling pathways in melanoma. Oncogene22, 3113–3122 (2003). ArticleCASPubMed Google Scholar
Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell95, 29–39 (1998). ArticleCASPubMed Google Scholar
Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science275, 1943–1947 (1997). ArticleCASPubMed Google Scholar
Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet.15, 356–362 (1997). ArticleCASPubMed Google Scholar
Li, D. M. & Sun, H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res.57, 2124–2129 (1997). CASPubMed Google Scholar
Guldberg, P. et al. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res.57, 3660–3663 (1997). CASPubMed Google Scholar
Teng, D. H. et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res.57, 5221–5225 (1997). CASPubMed Google Scholar
Robertson, G. P. et al. In vitro loss of heterozygosity targets the PTEN/MMAC1 gene in melanoma. Proc. Natl Acad. Sci. USA95, 9418–9423 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hwang, P. H. et al. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett.172, 83–91 (2001). ArticleCASPubMed Google Scholar
Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet.16, 64–67 (1997). ArticleCASPubMed Google Scholar
Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome. Nature Genet.16, 333–334 (1997). ArticleCASPubMed Google Scholar
Nelen, M. R. et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum. Mol. Genet.6, 1383–1387 (1997). ArticleCASPubMed Google Scholar
Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet.19, 348–355 (1998). ArticleCASPubMed Google Scholar
Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA96, 1563–1568 (1999). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol.8, 1169–1178 (1998). ArticleCASPubMed Google Scholar
You, M. J. et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc. Natl Acad. Sci. USA99, 1455–1460 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schreiber-Agus, N. et al. Role of Mxi1 in ageing organ systems and the regulation of normal and neoplastic growth. Nature393, 483–487 (1998). ArticleCASPubMed Google Scholar
Holman, C. D. & Armstrong, B. K. Cutaneous malignant melanoma and indicators of total accumulated exposure to the sun: an analysis separating histogenetic types. J. Natl Cancer Inst.73, 75–82 (1984). CASPubMed Google Scholar
Autier, P. & Dore, J. F. Influence of sun exposures during childhood and during adulthood on melanoma risk. EPIMEL and EORTC Melanoma Cooperative Group. European Organisation for Research and Treatment of Cancer. Int. J. Cancer77, 533–537 (1998). ArticleCASPubMed Google Scholar
Whiteman, D. C., Whiteman, C. A. & Green, A. C. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control12, 69–82 (2001). Google Scholar
Atillasoy, E. S. et al. UVB induces atypical melanocytic lesions and melanoma in human skin. Am. J. Pathol.152, 1179–1186 (1998). CASPubMedPubMed Central Google Scholar
Berking, C. et al. Photocarcinogenesis in human adult skin grafts. Carcinogenesis23, 181–187 (2002). ArticleCASPubMed Google Scholar
Jamal, S. & Schneider, R. J. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J. Clin. Invest.110, 443–452 (2002). ArticleCASPubMedPubMed Central Google Scholar
Donawho, C. K. & Kripke, M. L. Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated. Cancer Res.51, 4176–4181 (1991). CASPubMed Google Scholar
Pollock, P. M., Pearson, J. V. & Hayward, N. K. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosomes Cancer15, 77–88 (1996). Google Scholar
Peris, K. et al. UV fingerprint CDKN2a but no p14ARF mutations in sporadic melanomas. J. Invest. Dermatol.112, 825–826 (1999). ArticleCASPubMed Google Scholar
Kyritsis, A. P. et al. Mutations of the p16 gene in gliomas. Oncogene12, 63–67 (1996). CASPubMed Google Scholar
de Gruijl, F. R., van Kranen, H. J. & Mullenders, L. H. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J. Photochem. Photobiol. B.63, 19–27 (2001). ArticleCASPubMed Google Scholar
Horiguchi, M. et al. Molecular nature of ultraviolet B light-induced deletions in the murine epidermis. Cancer Res.61, 3913–3918 (2001). CASPubMed Google Scholar
Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet.3, 415–428 (2002). ArticleCASPubMed Google Scholar
Noonan, F. P. et al. Neonatal sunburn and melanoma in mice. Nature413, 271–272 (2001). This report provides the first experimental support for the long-held epidemiological observation that childhood sunburn confers a higher risk for melanoma development. ArticleCASPubMed Google Scholar
Noonan, F. P., Otsuka, T., Bang, S., Anver, M. R. & Merlino, G. Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res.60, 3738–3743 (2000). CASPubMed Google Scholar
Recio, J. A. et al. Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res.62, 6724–6730 (2002). CASPubMed Google Scholar
Kannan, K. et al. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Pro. Natl Acad. Sci. USA100, 1221–1225 (2003). This paper reports genetic studies in the mouse that identify the Rb-pathway components (Ink4a and Cdk6) as key targets of the melanoma-promoting effect of UV light. ArticleCAS Google Scholar
Bishop, D. T. et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J. Natl Cancer Inst.94, 894–903 (2002). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001). ArticleCASPubMed Google Scholar
Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med.347, 472–480 (2002). ArticleCASPubMed Google Scholar
Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science293, 876–880 (2001). ArticleCASPubMed Google Scholar
Felsher, D. W. Cancer revoked: oncogenes as therapeutic targets. Nature Rev. Cancer3, 375–380 (2003). ArticleCAS Google Scholar
Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature400, 468–472 (1999). This study is the first to show the use of an inducible onco-transgene model to study tumour maintenance. ArticleCASPubMed Google Scholar
Streit, M. & Detmar, M. Angiogenesis, lymphangiogenesis and melanoma metastasis. Oncogene22, 3172–3179 (2003). ArticleCASPubMed Google Scholar
Hsu, M. Y., Wheelock, M. J., Johnson, K. R. & Herlyn, M. Shifts in cadherin profiles between human normal melanocytes and melanomas. J. Investig. Dermatol. Symp. Proc.1, 188–194 (1996). CASPubMed Google Scholar
Hsu, M. Y. et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Pathol.156, 1515–1525 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13, 1501–1512 (1999). ArticleCASPubMed Google Scholar
DePinho, R. A. Transcriptional repression: The cancer-chromatin connection. Nature391, 533–536 (1998). ArticleCASPubMed Google Scholar
Quelle, D. E., Cheng, M., Ashmun, R. A. & Sherr, C. J. Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc. Natl Acad. Sci. USA94, 669–673 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev.12, 2424–2433 (1998). ArticleCASPubMedPubMed Central Google Scholar
Radfar, A., Unnikrishnan, I., Lee, H. W., DePinho, R. A. & Rosenberg, N. p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc. Natl Acad. Sci. USA95, 13194–13199 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bennett, D. C. Genetics, development, and malignancy of melanocytes. Int. Rev. Cytol.146, 191–260 (1993). ArticleCASPubMed Google Scholar
Jimbow, K., Quevedo W. C. Jr, Fitzpatrick, T. & Szabo, G. in Dermatology in General Medicine (eds. Fitzpatrick, T. B. et al.) 261–289 (McGraw-Hill, Inc, New York, 1993). Google Scholar
Hsu, M. Y., Meier, F. & Herlyn, M. Melanoma development and progression: a conspiracy between tumor and host. Differentiation70, 522–536 (2002). ArticleCASPubMed Google Scholar
Balch, C. M. et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol.19, 3622–3634 (2001). ArticleCASPubMed Google Scholar
Latres, E. et al. Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J.19, 3496–3506 (2000). ArticleCASPubMedPubMed Central Google Scholar
Walker, G. J. et al. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer22, 157–163 (1998). Google Scholar
Flores, J. F. et al. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res.56, 5023–5032 (1996). CASPubMed Google Scholar
Fujimoto, A., Morita, R., Hatta, N., Takehara, K. & Takata, M. p16INK4a inactivation is not frequent in uncultured sporadic primary cutaneous melanoma. Oncogene18, 2527–2532 (1999). ArticleCASPubMed Google Scholar
Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock? Cell102, 407–410 (2000). ArticleCASPubMed Google Scholar
Blackwell, T. K. & Weintraub, H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science250, 1104–1110 (1990). ArticleCASPubMed Google Scholar
Bertolotto, C. et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol.142, 827–835 (1998). ArticleCASPubMedPubMed Central Google Scholar
Price, E. R. et al. α-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J. Biol. Chem.273, 33042–33047 (1998). ArticleCASPubMed Google Scholar
Brose, M. S. et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res.62, 6997–7000 (2002). CASPubMed Google Scholar
Naoki, K., Chen, T. H., Richards, W. G., Sugarbaker, D. J. & Meyerson, M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res.62, 7001–7003 (2002). CASPubMed Google Scholar