TGFβ: the molecular Jekyll and Hyde of cancer (original) (raw)
Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer3, 807–821 (2003). ArticleCAS Google Scholar
Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature425, 577–584 (2003). ArticleCASPubMed Google Scholar
Lin, H. Y., Wang, X. F., Ng-Eaton, E., Weinberg, R. A. & Lodish, H. F. Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell68, 775–785 (1992). Describes the initial cloning and characterization of the type II TGFβ receptor. The binding affinity of TGFβ1 and TGFβ2 was shown, along with an analysis of this receptor as a functional serine and threonine kinase. ArticleCASPubMed Google Scholar
Wang, X. F. et al. Expression cloning and characterization of the TGF-β type III receptor. Cell67, 797–805 (1991). Describes the initial cloning and characterization of a type III TGFβ receptor. It was shown that the cloned type III receptor was able to bind TGFβ1 and increase the ligand affinity for the type II TGFβ receptor. ArticleCASPubMed Google Scholar
Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev.14, 163–176 (2000). PubMedPubMed Central Google Scholar
Munger, J. S. et al. The integrin-α v β 6 binds and activates latent TGF β 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell96, 319–328 (1999). ArticleCASPubMed Google Scholar
Lin, H. Y. et al. The soluble exoplasmic domain of the type II transforming growth factor (TGF)-β receptor. A heterogeneously glycosylated protein with high affinity and selectivity for TGF-β ligands. J. Biol. Chem.270, 2747–2754 (1995). ArticleCASPubMed Google Scholar
Crawford, S. E. et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell93, 1159–1170 (1998). ArticleCASPubMed Google Scholar
Moustakas, A. et al. The transforming growth factor-β receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand. J. Biol. Chem.268, 22215–22218 (1993). CASPubMed Google Scholar
Gilboa, L., Wells, R. G., Lodish, H. F. & Henis, Y. I. Oligomeric structure of type I and type II transforming growth factor-β receptors: homodimers form in the ER and persist at the plasma membrane. J. Cell. Biol.140, 767–777 (1998). ArticleCASPubMedPubMed Central Google Scholar
Goumans, M. J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell12, 817–828 (2003). ArticleCASPubMed Google Scholar
Wrana, J. L. et al. TGF β signals through a heteromeric protein kinase receptor complex. Cell71, 1003–1014 (1992). ArticleCASPubMed Google Scholar
Luo, K. & Lodish, H. F. Signaling by chimeric erythropoietin-TGF-β receptors: homodimerization of the cytoplasmic domain of the type I TGF-β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J.15, 4485–4496 (1996). ArticleCASPubMedPubMed Central Google Scholar
Feng, X. H. & Derynck, R. Ligand-independent activation of transforming growth factor (TGF) β signaling pathways by heteromeric cytoplasmic domains of TGF-β receptors. J. Biol. Chem.271, 13123–13129 (1996). ArticleCASPubMed Google Scholar
Olivey, H. E., Mundell, N. A., Austin, A. F. & Barnett, J. V. Transforming growth factor-β stimulates epithelial-mesenchymal transformation in the proepicardium. Dev. Dyn.235, 50–59 (2006). ArticleCASPubMedPubMed Central Google Scholar
Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell113, 685–700 (2003). ArticleCASPubMed Google Scholar
Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science307, 1621–1625 (2005). The TGFβ pathway has been targeted for interactome mapping. This paper and supplementary material outlines the results from approximately 12,000 individual experimental reactions that resulted in the identification of a large number of new interactions. ArticleCASPubMed Google Scholar
Feng, X. H. & Derynck, R. Specificity and versatility in tgf-β signaling through Smads. Annu. Rev. Cell Dev. Biol.21, 659–693 (2005). ArticleCASPubMed Google Scholar
Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol.1, 169–178 (2000). ArticleCAS Google Scholar
Akhurst, R. J. & Derynck, R. TGF-β signaling in cancer-a double-edged sword. Trends Cell Biol.11, S44–S51 (2001). CASPubMed Google Scholar
Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet.29, 117–129 (2001). ArticleCASPubMed Google Scholar
Lin, H. K., Bergmann, S. & Pandolfi, P. P. Cytoplasmic PML function in TGF-β signalling. Nature431, 205–211 (2004). ArticleCASPubMed Google Scholar
Zhang, L. et al. A role for MEK kinase 1 in TGF-β/activin-induced epithelium movement and embryonic eyelid closure. EMBO J.22, 4443–4454 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chiu, C. et al. TGF-β-induced p38 activation is mediated by Rac1-regulated generation of reactive oxygen species in cultured human keratinocytes. Int. J. Mol. Med.8, 251–255 (2001). CASPubMed Google Scholar
Edlund, S., Landstrom, M., Heldin, C. H. & Aspenstrom, P. Smad7 is required for TGF-β-induced activation of the small GTPase Cdc42. J. Cell Sci.117, 1835–1847 (2004). ArticleCASPubMed Google Scholar
Perlman, R., Schiemann, W. P., Brooks, M. W., Lodish, H. F. & Weinberg, R. A. TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature Cell Biol.3, 708–714 (2001). ArticleCASPubMed Google Scholar
Wilkes, M. C., Murphy, S. J., Garamszegi, N. & Leof, E. B. Cell-type-specific activation of PAK2 by transforming growth factor-β independent of Smad2 and Smad3. Mol. Cell Biol.23, 8878–8889 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mulder, K. M. & Morris, S. L. Activation of p21ras by transforming growth factor-β in epithelial cells. J. Biol. Chem.267, 5029–5031 (1992). CASPubMed Google Scholar
Yi, J. Y., Shin, I. & Arteaga, C. L. Type I transforming growth factor-β receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem.280, 10870–10876 (2005). ArticleCASPubMed Google Scholar
Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science307, 1603–1609 (2005). ArticleCASPubMed Google Scholar
Bhowmick, N. A. et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell12, 27–36 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science272, 1179–1182 (1996). ArticleCASPubMed Google Scholar
Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science270, 2008–2011 (1995). ArticleCASPubMed Google Scholar
Petritsch, C., Beug, H., Balmain, A. & Oft, M. TGF-β inhibits p70 S6 kinase via protein phosphatase 2A to induce G(1) arrest. Genes Dev.14, 3093–3101 (2000). ArticleCASPubMedPubMed Central Google Scholar
Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev.17, 41–58 (2006). ArticleCASPubMed Google Scholar
Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science268, 1336–1338 (1995). This is the first conclusive study that links inactivation of the type II TGFβ receptor to cancer. ArticleCASPubMed Google Scholar
Pasche, B. Role of transforming growth factor-β in cancer. J. Cell. Physiol.186, 153–168 (2001). ArticleCASPubMed Google Scholar
Bacon, A. L., Farrington, S. M. & Dunlop, M. G. Mutation frequency in coding and non-coding repeat sequences in mismatch repair deficient cells derived from normal human tissue. Oncogene20, 7464–7471 (2001). ArticleCASPubMed Google Scholar
Kim, S. J., Im, Y. H., Markowitz, S. D. & Bang, Y. J. Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev.11, 159–168 (2000). ArticleCASPubMed Google Scholar
Kang, S. H. et al. Transcriptional repression of the transforming growth factor-β type I receptor gene by DNA methylation results in the development of TGF-β resistance in human gastric cancer. Oncogene18, 7280–7286 (1999). ArticleCASPubMed Google Scholar
Lebrin, F., Deckers, M., Bertolino, P. & Ten Dijke, P. TGF-β receptor function in the endothelium. Cardiovasc Res.65, 599–608 (2005). ArticleCASPubMed Google Scholar
Pangas, S. A. & Matzuk, M. M. Genetic models for transforming growth factor-β superfamily signaling in ovarian follicle development. Mol. Cell. Endocrinol.225, 83–91 (2004). ArticleCASPubMed Google Scholar
Guy, C. T. et al. Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA89, 10578–10582 (1992). ArticleCASPubMedPubMed Central Google Scholar
Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell Biol.12, 954–961 (1992). ArticleCASPubMedPubMed Central Google Scholar
Matsui, Y., Halter, S. A., Holt, J. T., Hogan, B. L. & Coffey, R. J. Development of mammary hyperplasia and neoplasia in MMTV-TGF-α transgenic mice. Cell61, 1147–1155 (1990). ArticleCASPubMed Google Scholar
Hennighausen, L. & Robinson, G. W. Information networks in the mammary gland. Nature Rev. Mol. Cell Biol.6, 715–725 (2005). ArticleCAS Google Scholar
Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature439, 84–88 (2006). Although it is not directly related to TGFβ signalling in cancer, this high-impact paper outlines a new method whereby a single mammary stem cell can be isolated that is able to produce myoepithelium, ductal and alveolar epithelium. A single cell from this population was able to reconstitute all the epithelial and myoepithelial cell types necessary to reconstitute a functional mammary gland when transplanted into a cleared mammary fat pad. ArticleCASPubMed Google Scholar
Joseph, H., Gorska, A. E., Sohn, P., Moses, H. L. & Serra, R. Overexpression of a kinase-deficient transforming growth factor-β type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell10, 1221–1234 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, A. V. & Pollard, J. W. Transforming growth factor β3 induces cell death during the first stage of mammary gland involution. Development127, 3107–3118 (2000). CASPubMed Google Scholar
Pierce, D. F., Jr. et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β 1. Genes Dev.7, 2308–2317 (1993). ArticleCASPubMed Google Scholar
Boulanger, C. A. & Smith, G. H. Reducing mammary cancer risk through premature stem cell senescence. Oncogene20, 2264–2272 (2001). ArticleCASPubMed Google Scholar
Boulanger, C. A., Wagner, K. U. & Smith, G. H. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene24, 552–560 (2005). ArticleCASPubMed Google Scholar
Jhappan, C. et al. Targeting expression of a transforming growth factor β 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J.12, 1835–1845 (1993). ArticleCASPubMedPubMed Central Google Scholar
Kordon, E. C. et al. Ectopic TGF-β1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev. Biol.168, 47–61 (1995). ArticleCASPubMed Google Scholar
Pierce, D. F., Jr. et al. Mammary tumor suppression by transforming growth factor-β1 transgene expression. Proc. Natl Acad. Sci. USA92, 4254–4258 (1995). ArticleCASPubMedPubMed Central Google Scholar
Muraoka, R. S. et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor β1. Mol. Cell. Biol.23, 8691–8703 (2003). ArticleCASPubMedPubMed Central Google Scholar
Muraoka-Cook, R. S. et al. Conditional overexpression of active transforming growth factor β1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res.64, 9002–9011 (2004). ArticleCASPubMed Google Scholar
Gorska, A. E. et al. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-β receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am. J. Pathol.163, 1539–1549 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lenferink, A. E., Magoon, J., Pepin, M. C., Guimond, A. & O'Connor-McCourt, M. D. Expression of TGF-β type II receptor antisense RNA impairs TGF-β signaling in vitro and promotes mammary gland differentiation in vivo. Int. J. Cancer107, 919–928 (2003). ArticleCASPubMed Google Scholar
Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest.109, 1551–1559 (2002). ArticleCASPubMedPubMed Central Google Scholar
Forrester, E. et al. Effect of conditional knockout of the type II TGF-β receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res.65, 2296–2302 (2005). Outlined for the first time the effect of complete conditional type II TGFβ receptor ablation in the context of mammary development and tumourigenesis. ArticleCASPubMed Google Scholar
Ewan, K. B. et al. Latent transforming growth factor-β activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am. J. Pathol.160, 2081–2093 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ewan, K. B. et al. Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am. J. Pathol.167, 409–417 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tang, B. et al. TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J. Clin. Invest.112, 1116–1124 (2003). ArticleCASPubMedPubMed Central Google Scholar
Muraoka-Cook, R. S. et al. Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene (2005).
Oft, M., Heider, K. H. & Beug, H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol.8, 1243–1252 (1998). ArticleCASPubMed Google Scholar
Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J. & Massague, J. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc. Natl Acad. Sci. USA100, 8430–8435 (2003). ArticleCASPubMedPubMed Central Google Scholar
Deckers, M. et al. The tumor suppressor Smad4 is required for transforming growth factor-β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res.66, 2202–2209 (2006). ArticleCASPubMed Google Scholar
Cui, W. et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell86, 531–542 (1996). ArticleCASPubMed Google Scholar
Fowlis, D. J., Cui, W., Johnson, S. A., Balmain, A. & Akhurst, R. J. Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor β 1 in the skin of transgenic mice. Cell Growth Differ.7, 679–687 (1996). CASPubMed Google Scholar
Cui, W. et al. Concerted action of TGF-β1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev.9, 945–955 (1995). ArticleCASPubMed Google Scholar
Amendt, C., Schirmacher, P., Weber, H. & Blessing, M. Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene17, 25–34 (1998). ArticleCASPubMed Google Scholar
Go, C. et al. Aberrant cell cycle progression contributes to the early-stage accelerated carcinogenesis in transgenic epidermis expressing the dominant negative TGFβRII. Oncogene19, 3623–3631 (2000). ArticleCASPubMed Google Scholar
Go, C., Li, P. & Wang, X. J. Blocking transforming growth factor-β signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res.59, 2861–2868 (1999). CASPubMed Google Scholar
Wang, X. J., Liefer, K. M., Tsai, S., O'Malley, B. W. & Roop, D. R. Development of gene-switch transgenic mice that inducibly express transforming growth factor β1 in the epidermis. Proc. Natl Acad. Sci. USA96, 8483–8488 (1999). ArticleCASPubMedPubMed Central Google Scholar
Weeks, B. H., He, W., Olson, K. L. & Wang, X. J. Inducible expression of transforming growth factor β1 in papillomas causes rapid metastasis. Cancer Res.61, 7435–7443 (2001). CASPubMed Google Scholar
Han, G. et al. Distinct mechanisms of TGF-β1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J. Clin. Invest.115, 1714–1723 (2005). Showed the effect of increased TGFβ expression with the concurrent expression of a dominant-negative type II receptor in the skin epithelium during carcinogenesis. The data show that the expression of TGFβ with a reduction in the tumour-cell-autonomous response to this pathway promotes progression to metastasis. ArticleCASPubMedPubMed Central Google Scholar
Wang, X. J. et al. Expression of a dominant-negative type II transforming growth factor-β (TGF-β) receptor in the epidermis of transgenic mice blocks TGF-β-mediated growth inhibition. Proc. Natl Acad. Sci. USA94, 2386–2391 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science303, 848–851 (2004). Showed that TGFβ signalling in some fibroblast subpopulations can regulate the initiation of carcinoma in adjacent epithelia. ArticleCASPubMed Google Scholar
Cheng, N. et al. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene24, 5053–5068 (2005). Showed that TGFβ signalling in fibroblasts can regulate tumour progression in adjacent epithelium through distinct molecular mechanisms. ArticleCASPubMedPubMed Central Google Scholar
Hayward, S. W. et al. Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res.61, 8135–8142 (2001). CASPubMed Google Scholar
Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res.60, 1254–1260 (2000). CASPubMed Google Scholar
Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA99, 12877–12882 (2002). Showed that fibroblasts isolated from different parts of the body have distinct molecular profiles. The unique molecular identity of each fibroblast subpopulation was used to accurately identify the tissue from which it was derived. ArticleCASPubMedPubMed Central Google Scholar
Giannouli, C. C. & Kletsas, D. TGF-β regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2. Cell. Signal. 14 Dec 2005 [epub ahead of print].
Chen, W. & Wahl, S. M. TGF-β: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev.14, 85–89 (2003). ArticleCASPubMed Google Scholar
de Visser, K. E. & Kast, W. M. Effects of TGF-β on the immune system: implications for cancer immunotherapy. Leukemia13, 1188–1199 (1999). ArticleCASPubMed Google Scholar
Gorelik, L. & Flavell, R. A. Transforming growth factor-β in T-cell biology. Nature Rev. Immunol.2, 46–53 (2002). ArticleCAS Google Scholar
Wahl, S. M., Swisher, J., McCartney-Francis, N. & Chen, W. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J. Leukoc. Biol.76, 15–24 (2004). ArticleCASPubMed Google Scholar
Goumans, M. J., Lebrin, F. & Valdimarsdottir, G. Controlling the angiogenic switch: a balance between two distinct TGF-β receptor signaling pathways. Trends Cardiovasc. Med.13, 301–307 (2003). ArticleCASPubMed Google Scholar
Muraoka-Cook, R. S., Dumont, N. & Arteaga, C. L. Dual role of transforming growth factor β in mammary tumorigenesis and metastatic progression. Clin. Cancer Res.11, 937s–943s (2005). CASPubMed Google Scholar
Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity12, 171–181 (2000). ArticleCASPubMed Google Scholar
Kulkarni, A. B. et al. Transforming growth factor-β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA90, 770–774 (1993). ArticleCASPubMedPubMed Central Google Scholar
Leveen, P. et al. Induced disruption of the transforming growth factor-β type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood100, 560–568 (2002). ArticleCASPubMed Google Scholar
Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature359, 693–699 (1992). ArticleCASPubMedPubMed Central Google Scholar
Ruzek, M. C. et al. Minimal effects on immune parameters following chronic anti-TGF-β monoclonal antibody administration to normal mice. Immunopharmacol. Immunotoxicol.25, 235–257 (2003). ArticleCASPubMed Google Scholar
Yang, Y. A. et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest.109, 1607–1615 (2002). Before this study it was not known if the systemic inhibition of TGFβ signalling would be a viable strategy for administration over a sustained durationin vivo. However, this report indicates that in mice, a sustained systemic inhibition of TGFβ does not result in any observed adverse effects. ArticleCASPubMedPubMed Central Google Scholar
Yingling, J. M., Blanchard, K. L. & Sawyer, J. S. Development of TGF-β signalling inhibitors for cancer therapy. Nature Rev. Drug Discov.3, 1011–1022 (2004). ArticleCAS Google Scholar
Smyth, M. J. et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J. Immunol.176, 1582–1587 (2006). ArticleCASPubMed Google Scholar
Fontana, A., Constam, D. B., Frei, K., Malipiero, U. & Pfister, H. W. Modulation of the immune response by transforming growth factor-β. Int. Arch. Allergy Immunol.99, 1–7 (1992). ArticleCASPubMed Google Scholar
Fontana, A., Bodmer, S., Frei, K., Malipiero, U. & Siepl, C. Expression of TGF-β2 in human glioblastoma: a role in resistance to immune rejection? Ciba Found. Symp.157, 232–238; discussion 238–241 (1991). CASPubMed Google Scholar
Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med.7, 1118–1122 (2001). Blockade of TGFβ signalling in T cells resulted in a marked resistance to cancer when mice were challenged with live tumour cells. The resistance was shown to be the result of an efficient eradication of tumour cells owing to a robust immune response after the attenuation of TGFβ signalling in T cells. ArticleCASPubMed Google Scholar
Thomas, D. A. & Massague, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell8, 369–380 (2005). ArticleCASPubMed Google Scholar
Zhang, Q. et al. Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res.65, 1761–1769 (2005). ArticleCASPubMed Google Scholar
Peng, S. B. et al. Kinetic characterization of novel pyrazole TGF-β receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry44, 2293–2304 (2005). ArticleCASPubMed Google Scholar
Tojo, M. et al. The ALK-5 inhibitor A-83–01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-β. Cancer Sci.96, 791–800 (2005). ArticleCASPubMed Google Scholar
Ge, R. et al. Selective inhibitors of type I receptor kinase block cellular transforming growth factor-β signaling. Biochem. Pharmacol.68, 41–50 (2004). ArticleCASPubMed Google Scholar
DaCosta Byfield, S., Major, C., Laping, N. J. & Roberts, A. B. SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol. Pharmacol.65, 744–752 (2004). ArticlePubMed Google Scholar
Uhl, M. et al. SD-208, a novel transforming growth factor-β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res.64, 7954–7961 (2004). ArticleCASPubMed Google Scholar
Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol.62, 65–74 (2002). ArticleCASPubMed Google Scholar
Landis, M. D., Seachrist, D. D., Montanez-Wiscovich, M. E., Danielpour, D. & Keri, R. A. Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor-β signaling in ErbB2/Neu-induced tumors from transgenic mice. Oncogene24, 5173–5190 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yoshinaga, K. et al. Clinical significance of the expression of activin A in esophageal carcinoma. Int. J. Oncol.22, 75–80 (2003). CASPubMed Google Scholar
Subramanian, G. et al. Targeting endogenous transforming growth factor-β receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res.64, 5200–5211 (2004). ArticleCASPubMed Google Scholar
Cosgrove, D. et al. Integrin α1β1 and transforming growth factor-β1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am. J. Pathol.157, 1649–1659 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bandyopadhyay, A. et al. A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res.59, 5041–5046 (1999). CASPubMed Google Scholar
Bandyopadhyay, A. et al. Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res.62, 4690–4695 (2002). CASPubMed Google Scholar
Dasch, J. R., Pace, D. R., Waegell, W., Inenaga, D. & Ellingsworth, L. Monoclonal antibodies recognizing transforming growth factor-β. Bioactivity neutralization and transforming growth factor-β 2 affinity purification. J. Immunol.142, 1536–1541 (1989). CASPubMed Google Scholar
Cordeiro, M. F., Gay, J. A. & Khaw, P. T. Human anti-transforming growth factor-β2 antibody: a new glaucoma anti-scarring agent. Invest. Ophthalmol. Vis. Sci.40, 2225–2234 (1999). CASPubMed Google Scholar
Thompson, J. E. et al. A fully human antibody neutralising biologically active human TGFβ2 for use in therapy. J. Immunol. Methods227, 17–29 (1999). ArticleCASPubMed Google Scholar
Lucas, C. et al. The autocrine production of transforming growth factor-β1 during lymphocyte activation. A study with a monoclonal antibody-based ELISA. J. Immunol.145, 1415–1422 (1990). CASPubMed Google Scholar
Arteaga, C. L., Carty-Dugger, T., Moses, H. L., Hurd, S. D. & Pietenpol, J. A. Transforming growth factor β1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth Differ.4, 193–201 (1993). CASPubMed Google Scholar
Arteaga, C. L., Dugger, T. C., Winnier, A. R. & Forbes, J. T. Evidence for a positive role of transforming growth factor-β in human breast cancer cell tumorigenesis. J. Cell. Biochem. Suppl.17G, 187–193 (1993). ArticleCASPubMed Google Scholar
Arteaga, C. L. et al. Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. J. Clin. Invest.92, 2569–2576 (1993). ArticleCASPubMedPubMed Central Google Scholar
Fakhrai, H. et al. Eradication of established intracranial rat gliomas by transforming growth factor-β antisense gene therapy. Proc. Natl Acad. Sci. USA93, 2909–2914 (1996). ArticleCASPubMedPubMed Central Google Scholar
Liau, L. M., Fakhrai, H. & Black, K. L. Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-β antisense gene. Neurol. Res.20, 742–747 (1998). ArticleCASPubMed Google Scholar
Schlingensiepen, K. H. et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev.17, 729–139 (2005). Google Scholar
Schlingensiepen, R. et al. Intracerebral and intrathecal infusion of the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides15, 94–104 (2005). ArticleCASPubMed Google Scholar
Rajagopalan, H., Nowak, M. A., Vogelstein, B. & Lengauer, C. The significance of unstable chromosomes in colorectal cancer. Nature Rev. Cancer3, 695–701 (2003). ArticleCAS Google Scholar
Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med.10, 789–799 (2004). ArticleCASPubMed Google Scholar
Hill, R., Song, Y., Cardiff, R. D. & Van Dyke, T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell123, 1001–1011 (2005). ArticleCASPubMed Google Scholar
Desgrosellier, J. S., Mundell, N. A., McDonnell, M. A., Moses, H. L. & Barnett, J. V. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev. Biol.280, 201–210 (2005). ArticleCASPubMed Google Scholar
Lai, Y. T. et al. Activin receptor-like kinase 2 can mediate atrioventricular cushion transformation. Dev. Biol.222, 1–11 (2000). ArticleCASPubMed Google Scholar
Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol.127, 2021–2036 (1994). ArticleCASPubMed Google Scholar
Adams, D. H. et al. Transforming growth factor-β induces human T lymphocyte migration in vitro. J. Immunol.147, 609–6012 (1991). CASPubMed Google Scholar
Ahmadzadeh, M. & Rosenberg, S. A. TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J. Immunol.174, 5215–5223 (2005). ArticleCASPubMed Google Scholar
Bogdan, C. & Nathan, C. Modulation of macrophage function by transforming growth factor β, interleukin-4, and interleukin-10. Ann. NY Acad. Sci.685, 713–739 (1993). ArticleCASPubMed Google Scholar
Wahl, S. M. et al. Transforming growth factor-β is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. J. Immunol.140, 3026–3032 (1988). CASPubMed Google Scholar
Bombara, C. & Ignotz, R. A. TGF-β inhibits proliferation of and promotes differentiation of human promonocytic leukemia cells. J. Cell. Physiol.153, 30–37 (1992). ArticleCASPubMed Google Scholar
Kitamura, M. Identification of an inhibitor targeting macrophage production of monocyte chemoattractant protein-1 as TGF-β 1. J. Immunol.159, 1404–1411 (1997). CASPubMed Google Scholar
Feinberg, M. W. et al. Essential role for Smad3 in regulating MCP-1 expression and vascular inflammation. Circ. Res.94, 601–608 (2004). ArticleCASPubMed Google Scholar
Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest.101, 890–898 (1998). ArticleCASPubMedPubMed Central Google Scholar
McDonald, P. P., Fadok, V. A., Bratton, D. & Henson, P. M. Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-β in macrophages that have ingested apoptotic cells. J. Immunol.163, 6164–6172 (1999). CASPubMed Google Scholar
Xiao, Y. Q. et al. Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-β. J. Biol. Chem.277, 14884–14893 (2002). ArticleCASPubMed Google Scholar
Wang, J. et al. Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages. J. Biol. Chem.276, 49236–49243 (2001). ArticleCASPubMed Google Scholar
Franitza, S. et al. TGF-β1 enhances SDF-1α-induced chemotaxis and homing of naive T cells by up-regulating CXCR4 expression and downstream cytoskeletal effector molecules. Eur. J. Immunol.32, 193–202 (2002). ArticleCASPubMed Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005). ArticleCASPubMed Google Scholar
Geiser, A. G. et al. Transforming growth factor β1 (TGF-β1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-β1 null mouse phenotype. Proc. Natl Acad. Sci. USA90, 9944–9948 (1993). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. J. et al. TGF-β suppresses IFN-γ induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression. J. Immunol.158, 2065–2075 (1997). CASPubMed Google Scholar
Johns, L. D. et al. Transforming growth factor-β 1 differentially regulates proliferation and MHC class-II antigen expression in forebrain and brainstem astrocyte primary cultures. Brain Res.585, 229–236 (1992). ArticleCASPubMed Google Scholar
Ma, D. & Niederkorn, J. Y. Transforming growth factor-β down-regulates major histocompatibility complex class I antigen expression and increases the susceptibility of uveal melanoma cells to natural killer cell-mediated cytolysis. Immunology86, 263–269 (1995). CASPubMedPubMed Central Google Scholar
Witham, T. F. et al. Expression of a soluble transforming growth factor-β (TGFβ) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcoma in vivo. J. Neurooncol.64, 63–69 (2003). PubMed Google Scholar
Reibman, J. et al. Transforming growth factor β1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc. Natl Acad. Sci. USA88, 6805–6809 (1991). ArticleCASPubMedPubMed Central Google Scholar
Chen, J. J., Sun, Y. & Nabel, G. J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science282, 1714–1717 (1998). ArticleCASPubMed Google Scholar
Hahne, M. et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science274, 1363–1366 (1996). ArticleCASPubMed Google Scholar