PTEN loss in the continuum of common cancers, rare syndromes and mouse models (original) (raw)
Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell95, 29–39 (1998). ArticleCASPubMed Google Scholar
Wu, X., Senechal, K., Neshat, M. S., Whang, Y. E. & Sawyers, C. L. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl Acad. Sci. USA95, 15587–15591 (1998). ArticleCASPubMedPubMed Central Google Scholar
Marsh, D. J. et al. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet.7, 507–515 (1998). ArticleCASPubMed Google Scholar
Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science275, 1943–1947 (1997). ArticleCASPubMed Google Scholar
Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet.15, 356–362 (1997). ArticleCASPubMed Google Scholar
Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet.16, 64–67 (1997). ArticleCASPubMed Google Scholar
Hobert, J. A. & Eng., C. PTEN hamartoma tumor syndrome: an overview. Genet. Med.11, 687–694 (2009). ArticleCASPubMed Google Scholar
Hlobilkova, A. et al. Cell cycle arrest by the PTEN tumor suppressor is target cell specific and may require protein phosphatase activity. Exp. Cell Res.256, 571–577 (2000). ArticleCASPubMed Google Scholar
Weng, L. P., Brown, J. L. & Eng., C. PTEN coordinates G1 arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum. Mol. Genet.10, 599–604 (2001). ArticleCASPubMed Google Scholar
Dey, N. et al. The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration. Cancer Res.68, 1862–1871 (2008). ArticleCASPubMed Google Scholar
Davidson, L. et al. Suppression of cellular proliferation and invasion by the concerted lipid and protein phosphatase activities of PTEN. Oncogene29, 687–697 (2010). ArticleCASPubMed Google Scholar
Poon, J. S., Eves, R. & Mak, A. S. Both lipid- and protein-phosphatase activities of PTEN contribute to the p53-PTEN anti-invasion pathway. Cell Cycle9, 4450–4454 (2010). ArticleCASPubMed Google Scholar
Shen, W. H. et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell128, 157–170 (2007). ArticleCASPubMed Google Scholar
Song, M. S. et al. Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell144, 187–199 (2011). ArticleCASPubMedPubMed Central Google Scholar
Qiao, X., Zhang, L., Gamper, A. M., Fujita, T. & Wan, Y. APC/C-Cdh1: from cell cycle to cellular differentiation and genomic integrity. Cell Cycle9, 3904–3912 (2010). ArticleCASPubMedPubMed Central Google Scholar
Orloff, M. S. & Eng., C. Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene27, 5387–5397 (2008). ArticleCASPubMed Google Scholar
Marsh, D. J. et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum. Mol. Genet.8, 1461–1472 (1999). ArticleCASPubMed Google Scholar
Pezzolesi, M. G. et al. Mutation-positive and mutation-negative patients with Cowden and Bannayan-Riley-Ruvalcaba syndromes associated with distinct 10q haplotypes. Am. J. Hum. Genet.79, 923–934 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. P. et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am. J. Hum. Genet.73, 404–411 (2003). ArticleCASPubMedPubMed Central Google Scholar
Alimonti, A. et al. Subtle variations in Pten dose determine cancer susceptibility. Nature Genet.42, 454–458 (2010). ArticleCASPubMed Google Scholar
Shen-Li, H., Koujak, S., Szablocs, M. & Parsons, R. Reduction of Pten dose leads to neoplastic development in multiple organs of _Pten_shRNA mice. Cancer Biol. Ther.10, 1194–1200 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Alvarez-Nunez, F. et al. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid16, 17–23 (2006). ArticleCASPubMed Google Scholar
Garcia, J. M. et al. Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosom. Cancer41, 117–124 (2004). ArticleCASPubMed Google Scholar
Ho, C. M. et al. PTEN promoter methylation and LOH of 10q22–23 locus in PTEN expression of ovarian clear cell adenocarcinomas. Gynecol. Oncol.112, 307–313 (2009). ArticleCASPubMed Google Scholar
Kang, Y. H., Lee, H. S. & Kim, W. H. Promoter methylation and silencing of PTEN in gastric carcinoma. Lab. Invest.82, 285–291 (2002). ArticleCASPubMed Google Scholar
Salvesen, H. B. et al. PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int. J. Cancer91, 22–26 (2001). ArticleCASPubMed Google Scholar
Soria, J. et al. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin. Cancer Res.8, 1178–1184 (2002). CASPubMed Google Scholar
Huse, J. T. et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev.23, 1327–1337 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. G. et al. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin. Chim. Acta411, 846–852 (2010). ArticleCASPubMed Google Scholar
Poliseno, L. et al. Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci. Signal.3, ra29 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet.19, 348–355 (1998). ArticleCASPubMed Google Scholar
Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA96, 1563–1568 (1999). ArticleCASPubMedPubMed Central Google Scholar
Stambolic, V. et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/- mice. Cancer Res.60, 3605–3611 (2000). CASPubMed Google Scholar
Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol.8, 1169–1178 (1998). ArticleCASPubMed Google Scholar
Keniry, M. & Parsons, R. The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene27, 5477–5485 (2008). ArticleCASPubMed Google Scholar
Daikoku, T. et al. Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res.68, 5619–5627 (2008). ArticleCASPubMedPubMed Central Google Scholar
Li, G. et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development129, 4159–4170 (2002). CASPubMed Google Scholar
Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell4, 209–221 (2003). ArticleCASPubMed Google Scholar
Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity14, 523–534 (2001). ArticleCASPubMed Google Scholar
Horie, Y. et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest.113, 1774–1783 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tsuruta, H. et al. Hyperplasia and carcinomas in Pten-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Res.66, 8389–8396 (2006). ArticleCASPubMed Google Scholar
Yanagi, S. et al. Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. J. Clin. Invest.117, 2929–2940 (2007). ArticleCASPubMedPubMed Central Google Scholar
Stiles, B. L. et al. Selective deletion of Pten in pancreatic β cells leads to increased islet mass and resistance to STZ-induced diabetes. Mol. Cell. Biol.26, 2772–2781 (2006). ArticleCASPubMedPubMed Central Google Scholar
Marsh, V. et al. Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nature Genet.40, 1436–1444 (2008). ArticleCASPubMed Google Scholar
Gustafson, S., Zbuk, K. M., Scacheri, C. & Eng., C. Cowden syndrome. Semin. Oncol.34, 428–434 (2007). ArticleCASPubMed Google Scholar
Saal, L. H. et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nature Genet.40, 102–107 (2008). ArticleCASPubMed Google Scholar
Perez-Tenorio, G. et al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin. Cancer Res.13, 3577–3584 (2007). ArticleCASPubMed Google Scholar
Sangale, Z. et al. A robust immunohistochemical assay for detecting PTEN expression in human tumors. Appl. Immunohistochem. Mol. Morphol.19, 173–183 (2011). ArticleCASPubMed Google Scholar
Singh, B., Ittmann, M. M. & Krolewski, J. J. Sporadic breast cancers exhibit loss of heterozygosity on chromosome segment 10q23 close to the Cowden disease locus. Genes Chromosom. Cancer21, 166–171 (1998). ArticleCASPubMed Google Scholar
Schade, B. et al. PTEN deficiency in a luminal ErbB-2 mouse model results in dramatic acceleration of mammary tumorigenesis and metastasis. J. Biol. Chem.284, 19018–19026 (2009). ArticleCASPubMedPubMed Central Google Scholar
Blumenthal, G. M. & Dennis, P. A. PTEN hamartoma tumor syndromes. Eur. J. Hum. Genet.16, 1289–1300 (2008). ArticleCASPubMed Google Scholar
Risinger, J. I., Hayes, A. K., Berchuck, A. & Barrett, J. C. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res.57, 4736–4738 (1997). CASPubMed Google Scholar
Maxwell, G. L. et al. Mutation of the PTEN tumor suppressor gene in endometrial hyperplasias. Cancer Res.58, 2500–2503 (1998). CASPubMed Google Scholar
Tashiro, H. et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res.57, 3935–3940 (1997). CASPubMed Google Scholar
Zhou, X. P., Kuismanen, S., Nystrom-Lahti, M., Peltomaki, P. & Eng., C. Distinct PTEN mutational spectra in hereditary non-polyposis colon cancer syndrome-related endometrial carcinomas compared to sporadic microsatellite unstable tumors. Hum. Mol. Genet.11, 445–450 (2002). ArticleCASPubMed Google Scholar
Beiner, M. E. et al. Endometrial cancer risk is associated with variants of the mismatch repair genes MLH1 and MSH2. Cancer Epidemiol. Biomarkers Prev.15, 1636–1640 (2006). ArticleCASPubMed Google Scholar
Kanamori, Y. et al. Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin. Cancer Res.7, 892–895 (2001). CASPubMed Google Scholar
Vilgelm, A. et al. Akt-mediated phosphorylation and activation of estrogen receptor α is required for endometrial neoplastic transformation in Pten+/- mice. Cancer Res.66, 3375–3380 (2006). ArticleCASPubMed Google Scholar
Milam, M. R. et al. Reduced progression of endometrial hyperplasia with oral mTOR inhibition in the Pten heterozygote murine model. Am. J. Obstet. Gynecol.196, 247 (2007). ArticlePubMedCAS Google Scholar
Wang, H. et al. DNA mismatch repair deficiency accelerates endometrial tumorigenesis in Pten heterozygous mice. Am. J. Pathol.160, 1481–1486 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lloyd, K. M. & Dennis, M. Cowden's disease. A possible new symptom complex with multiple system involvement. Ann. Intern. Med.58, 136–142 (1963). ArticlePubMed Google Scholar
Dahia, P. L. et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res.57, 4710–4713 (1997). CASPubMed Google Scholar
Halachmi, N. et al. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosom. Cancer23, 239–243 (1998). ArticleCASPubMed Google Scholar
Frisk, T. et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosom. Cancer35, 74–80 (2002). ArticleCASPubMed Google Scholar
Puxeddu, E. et al. Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens. Mutat. Res.570, 17–32 (2005). ArticleCASPubMed Google Scholar
Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet.27, 222–224 (2001). ArticleCASPubMed Google Scholar
Yeager, N., Klein-Szanto, A., Kimura, S. & Di Cristofano, A. Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis. Cancer Res.67, 959–966 (2007). ArticleCASPubMed Google Scholar
Guigon, C. J., Zhao, L., Willingham, M. C. & Cheng, S. Y. PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer. Oncogene28, 509–517 (2009). ArticleCASPubMed Google Scholar
Wang, S. I. et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res.57, 4183–4186 (1997). CASPubMed Google Scholar
Sano, T. et al. Differential expression of MMAC/PTEN in glioblastoma multiforme: relationship to localization and prognosis. Cancer Res.59, 1820–1824 (1999). CASPubMed Google Scholar
Schmidt, E. E. et al. Mutational profile of the PTEN gene in primary human astrocytic tumors and cultivated xenografts. J. Neuropathol. Exp. Neurol.58, 1170–1183 (1999). ArticleCASPubMed Google Scholar
Kwon, C. H. et al. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nature Genet.29, 404–411 (2001). ArticleCASPubMed Google Scholar
Backman, S. A. et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nature Genet.29, 396–403 (2001). ArticleCASPubMed Google Scholar
Groszer, M. et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc. Natl Acad. Sci. USA103, 111–116 (2006). ArticleCASPubMed Google Scholar
Wei, Q. et al. High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res.66, 7429–7437 (2006). ArticleCASPubMed Google Scholar
Xiao, A., Wu, H., Pandolfi, P. P., Louis, D. N. & Van Dyke, T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell1, 157–168 (2002). ArticleCASPubMed Google Scholar
Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature455, 1129–1133 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zheng, H. et al. Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb. Symp. Quant. Biol.73, 427–437 (2008). ArticleCASPubMed Google Scholar
Lundgren, R., Kristoffersson, U., Heim, S., Mandahl, N. & Mitelman, F. Multiple structural chromosome rearrangements, including del(7q) and del(10q), in an adenocarcinoma of the prostate. Cancer Genet. Cytogenet.35, 103–108 (1988). ArticleCASPubMed Google Scholar
Cairns, P. et al. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res.57, 4997–5000 (1997). CASPubMed Google Scholar
Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nature Rev. Cancer1, 34–45 (2001). ArticleCAS Google Scholar
Abate-Shen, C. et al. Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res.63, 3886–3890 (2003). CASPubMed Google Scholar
Varambally, S. et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell8, 393–406 (2005). ArticleCASPubMed Google Scholar
King, J. C. et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nature Genet.41, 524–526 (2009). ArticleCASPubMed Google Scholar
Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nature Genet.41, 619–624 (2009). ArticleCASPubMed Google Scholar
Kwabi-Addo, B. et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc. Natl Acad. Sci. USA98, 11563–11568 (2001). ArticleCASPubMedPubMed Central Google Scholar
Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, e59 (2003).
Guldberg, P. et al. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res.57, 3660–3663 (1997). CASPubMed Google Scholar
Mirmohammadsadegh, A. et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res.66, 6546–6552 (2006). ArticleCASPubMed Google Scholar
Lahtz, C., Stranzenbach, R., Fiedler, E., Helmbold, P. & Dammann, R. H. Methylation of PTEN as a prognostic factor in malignant melanoma of the skin. J. Invest. Dermatol.130, 620–622 (2010). ArticleCASPubMed Google Scholar
Mikhail, M. et al. PTEN expression in melanoma: relationship with patient survival, Bcl-2 expression, and proliferation. Clin. Cancer Res.11, 5153–5157 (2005). ArticleCASPubMed Google Scholar
Wang, Y. et al. Evidence of ultraviolet type mutations in xeroderma pigmentosum melanomas. Proc. Natl Acad. Sci. USA106, 6279–6284 (2009). ArticleCASPubMedPubMed Central Google Scholar
Inoue-Narita, T. et al. Pten deficiency in melanocytes results in resistance to hair graying and susceptibility to carcinogen-induced melanomagenesis. Cancer Res.68, 5760–5768 (2008). ArticleCASPubMed Google Scholar
You, M. J. et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc. Natl Acad. Sci. USA99, 1455–1460 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dankort, D. et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nature Genet.41, 544–552 (2009). ArticleCASPubMed Google Scholar
Scheper, M. A., Nikitakis, N. G., Sarlani, E., Sauk, J. J. & Meiller, T. F. Cowden syndrome: report of a case with immunohistochemical analysis and review of the literature. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.101, 625–631 (2006). ArticlePubMed Google Scholar
Yokomizo, A. et al. PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers. Oncogene17, 475–479 (1998). ArticleCASPubMed Google Scholar
Kohno, T., Takahashi, M., Manda, R. & Yokota, J. Inactivation of the PTEN/MMAC1/TEP1 gene in human lung cancers. Genes Chromosom. Cancer22, 152–156 (1998). ArticleCASPubMed Google Scholar
Marsit, C. J. et al. PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum. Pathol.36, 768–776 (2005). ArticleCASPubMed Google Scholar
Gazdar, A. F. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene Suppl.28, S24–S31 (2009). ArticleCAS Google Scholar
Sos, M. L. et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res.69, 3256–3261 (2009). ArticleCASPubMedPubMed Central Google Scholar
Buckingham, L. et al. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients. Int. J. Cancer126, 1630–1639 (2010). CASPubMed Google Scholar
Iwanaga, K. et al. Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Res.68, 1119–1127 (2008). ArticleCASPubMedPubMed Central Google Scholar
Perren, A. et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am. J. Pathol.157, 1097–1103 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stanger, B. Z. et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell8, 185–195 (2005). ArticleCASPubMed Google Scholar
Xu, X., Ehdaie, B., Ohara, N., Yoshino, T. & Deng, C. X. Synergistic action of Smad4 and Pten in suppressing pancreatic ductal adenocarcinoma formation in mice. Oncogene29, 674–686 (2010). ArticleCASPubMed Google Scholar
Yao, Y. J. et al. PTEN/MMAC1 mutations in hepatocellular carcinomas. Oncogene18, 3181–3185 (1999). ArticleCASPubMed Google Scholar
Yeh, K. T. et al. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in hepatocellular carcinoma. Cancer Invest.18, 123–129 (2000). ArticleCASPubMed Google Scholar
Dong-Dong, L., Xi-Ran, Z. & Xiang-Rong, C. Expression and significance of new tumor suppressor gene PTEN in primary liver cancer. J. Cell. Mol. Med.7, 67–71 (2003). ArticlePubMedPubMed Central Google Scholar
Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc. Natl Acad. Sci. USA101, 2082–2087 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cairns, P. et al. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene16, 3215–3218 (1998). ArticleCASPubMed Google Scholar
Wang, D. S. et al. Molecular analysis of PTEN and MXI1 in primary bladder carcinoma. Int. J. Cancer88, 620–625 (2000). ArticleCASPubMed Google Scholar
van Nederveen, F. H. et al. PTEN gene loss, but not mutation, in benign and malignant phaeochromocytomas. J. Pathol.209, 274–280 (2006). ArticleCASPubMed Google Scholar
Gutierrez, A. et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood114, 647–50 (2009). ArticleCASPubMedPubMed Central Google Scholar
Silva, A. et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J. Clin. Invest.118, 3762–3774 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gronbaek, K., Zeuthen, J., Guldberg, P., Ralfkiaer, E. & Hou-Jensen, K. Alterations of the MMAC1/PTEN gene in lymphoid malignancies. Blood91, 4388–4390 (1998). CASPubMed Google Scholar
Sakai, A., Thieblemont, C., Wellmann, A., Jaffe, E. S. & Raffeld, M. PTEN gene alterations in lymphoid neoplasms. Blood92, 3410–3415 (1998). CASPubMed Google Scholar
Scarisbrick, J. J., Woolford, A. J., Russell-Jones, R. & Whittaker, S. J. Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood95, 2937–2942 (2000). CASPubMed Google Scholar
Guertin, D. A. et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell15, 148–159 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bayascas, J. R., Leslie, N. R., Parsons, R., Fleming, S. & Alessi, D. R. Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN+/- mice. Curr. Biol.15, 1839–1846 (2005). ArticleCASPubMed Google Scholar
Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc. Natl Acad. Sci. USA98, 10320–10325 (2001). ArticleCASPubMedPubMed Central Google Scholar
Blando, J. et al. PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth. Am. J. Pathol.174, 1869–1879 (2009). ArticleCASPubMedPubMed Central Google Scholar
Huang, X. et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J.412, 211–221 (2008). ArticleCASPubMed Google Scholar
Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med.358, 140–151 (2008). ArticleCASPubMedPubMed Central Google Scholar
Krueger, D. A. et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N. Engl. J. Med.363, 1801–1811 (2010). ArticleCASPubMed Google Scholar
Marsh, D. J. et al. Rapamycin treatment for a child with germline PTEN mutation. Nature Clin. Pract. Oncol.5, 357–361 (2008). ArticleCAS Google Scholar
Mahalingam, D., Sankhala, K., Mita, A., Giles, F. J. & Mita, M. M. Targeting the mTOR pathway using deforolimus in cancer therapy. Future Oncol.5, 291–303 (2009). ArticleCASPubMed Google Scholar
Slomovitz, B. M. et al. A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma. Cancer116, 5415–5419 (2010). ArticleCASPubMed Google Scholar
Yuan, R., Kay, A., Berg, W. J. & Lebwohl, D. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J. Hematol. Oncol.2, 45 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Courtney, K. D., Corcoran, R. B. & Engelman, J. A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol.28, 1075–1083 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pal, S. K., Reckamp, K., Yu, H. & Figlin, R. A. Akt inhibitors in clinical development for the treatment of cancer. Expert Opin. Investig. Drugs19, 1355–1366 (2010). ArticleCASPubMed Google Scholar
Teresi, R. E. et al. Increased PTEN expression due to transcriptional activation of PPARγ by Lovastatin and Rosiglitazone. Int. J. Cancer118, 2390–2398 (2006). ArticleCASPubMed Google Scholar
Liu, X. et al. Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J. Clin. Invest.120, 2497–2507 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dedes, K. J. et al. PTEN deficiency in endometrioid endometrial adenocarcinomas predicts sensitivity to PARP inhibitors. Sci. Transl. Med.2, 53ra75 (2010). ArticlePubMedCAS Google Scholar
McEllin, B. et al. PTEN loss compromises homologous recombination repair in astrocytes: implications for glioblastoma therapy with temozolomide or poly(ADP-ribose) polymerase inhibitors. Cancer Res.70, 5457–5464 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell6, 117–127 (2004). ArticleCASPubMed Google Scholar
Esteva, F. J. et al. PTEN, PIK3CA, p-AKT, and p-p70S6K status. association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am. J. Pathol.177, 1647–1656 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature445, 661–665 (2007). ArticleCASPubMed Google Scholar
Freeman, D. et al. Genetic background controls tumor development in PTEN-deficient mice. Cancer Res.66, 6492–6496 (2006). ArticleCASPubMed Google Scholar
Engel, C. et al. Association of the Variants CASP8 D302H and CASP10 V410I with Breast and Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. Cancer Epidemiol. Biomarkers Prev.19, 2859–2868 (2010). ArticleCASPubMedPubMed Central Google Scholar
Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science294, 2186–2189 (2001). ArticleCASPubMed Google Scholar
Gregorian, C. et al. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J. Neurosci.29, 1874–1886 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, S. et al. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc. Natl Acad. Sci. USA103, 1480–1485 (2006). ArticleCASPubMedPubMed Central Google Scholar
Korsten, H., Ziel- van der Made, A., Ma, X., van der Kwast, T. & Trapman, J. Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS ONE4, e5662 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Mulholland, D. J. et al. Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the _Pten_-null prostate cancer model. Cancer Res.69, 8555–8562 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006). ArticleCASPubMed Google Scholar
Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature441, 518–522 (2006). ArticleCASPubMed Google Scholar
Furnari, F. B., Huang, H. J. & Cavenee, W. K. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res.58, 5002–5008 (1998). CASPubMed Google Scholar
Lee, J. O. et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell99, 323–334 (1999). ArticleCASPubMed Google Scholar
Georgescu, M. M. et al. Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res.60, 7033–7038 (2000). CASPubMed Google Scholar
Adey, N. B. et al. Threonine phosphorylation of the MMAC1/PTEN PDZ binding domain both inhibits and stimulates PDZ binding. Cancer Res.60, 35–37 (2000). CASPubMed Google Scholar
Georgescu, M. M., Kirsch, K. H., Akagi, T., Shishido, T. & Hanafusa, H. The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc. Natl Acad. Sci. USA96, 10182–10187 (1999). ArticleCASPubMedPubMed Central Google Scholar
Vanhaesebroeck, B. & Alessi, D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J.346, 561–576 (2000). CASPubMedPubMed Central Google Scholar
Hynes, N. E. & MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol.21, 177–184 (2009). ArticleCASPubMed Google Scholar
Dowling, R. J., Topisirovic, I., Fonseca, B. D. & Sonenberg, N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim. Biophys. Acta1804, 433–439 (2010). ArticleCASPubMed Google Scholar
Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell10, 457–468 (2002). ArticleCASPubMed Google Scholar
O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66, 1500–1508 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). ArticleCASPubMed Google Scholar
Edelman, G. A phase I dose-escalation study of XL147 (SAR245408), a PI3K inhibitor administered orally to patients (pts) with advanced malignancies. Am. Soc. Clin. Oncol. Abstr.28, 3004 (2010). Article Google Scholar
Von Hoff, D. D. et al. A first-in-human phase I study to evaluate the pan-PI3K inhibitor GDC-0941 administered QD or BID in patients with advanced solid tumors. Am. Soc. Clin. Oncol. Abstr.28, 2541 (2010). Article Google Scholar
O'Brien, C. et al. Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin. Cancer Res.16, 3670–3683 (2010). ArticleCASPubMed Google Scholar
Floris, G. et al. Activity of GDC-0941, an inhibitor of phosphoinositol 3 kinase (PI3K), in gastrointestinal stromal tumor (GIST) xenograft and duration of response after discontinuation of treatment in combination with imatinib. Am. Soc. Clin. Oncol. Abstr.28, 10020 (2010). Article Google Scholar
Jimeno, A. et al. Final results from a phase I, dose-escalation study of PX-866, an irreversible, pan-isoform inhibitor of PI3 kinase. Am. Soc. Clin. Oncol. Abstr.28, 3089 (2010). Article Google Scholar
Le Cras, T. D. et al. Inhibition of PI3K by PX-866 prevents transforming growth factor-α-induced pulmonary fibrosis. Am. J. Pathol.176, 679–686 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baselga, J. et al. A first-in-human phase I study of BKM120, an oral pan-class I PI3K inhibitor, in patients (pts) with advanced solid tumors. Am. Soc. Clin. Oncol. Abstr.28, 3003 (2010). Article Google Scholar
Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med.2, 51ra70 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Furman, R. R. et al. Interim results from a phase I study of CAL-101, a selective oral inhibitor of phosphatidylinositol 3-kinase p110d isoform, in patients with relapsed or refractory hematologic malignancies. Am. Soc. Clin. Oncol. Abstr.28, 3032 (2010). Article Google Scholar
Burris, H. et al. First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. Am. Soc. Clin. Oncol. Abstr.28, 3005 (2010). Article Google Scholar
Chiorean, E. G. et al. Phase I evaluation of SF1126, a vascular targeted PI3K inhibitor, administered twice weekly IV in patients with refractory solid tumors. Am. Soc. Clin. Oncol. Abstr.27, 2558 (2009). Google Scholar
Garlich, J. R. et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res.68, 206–215 (2008). ArticleCASPubMed Google Scholar
Dolly, S. et al. A first-in-human, phase l study to evaluate the dual PI3K/mTOR inhibitor GDC-0980 administered QD in patients with advanced solid tumors or non-Hodgkin's lymphoma. Am. Soc. Clin. Oncol. Abstr.28, 3079 (2010). Article Google Scholar
Brana, I. et al. A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765 (SAR245409), a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced malignancies. Am. Soc. Clin. Oncol. Abstr.28, 3030 (2010). Article Google Scholar
Prasad, G. et al. Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol. 11 Feb 2011 (doi: 10.1093/neuonc/noq193).
Mallon, R. et al. Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor. Mol. Cancer Ther.9, 976–984 (2010). ArticleCASPubMed Google Scholar
Venkatesan, A. M. et al. Bis(morpholino-1,3,5-triazine) derivatives: potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor. J. Med. Chem.53, 2636–2645 (2010). ArticleCASPubMed Google Scholar
Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet372, 449–456 (2008). ArticleCASPubMed Google Scholar
Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med.356, 2271–2281 (2007). ArticleCASPubMed Google Scholar
Dancey, J. mTOR signaling and drug development in cancer. Nature Rev. Clin. Oncol.7, 209–219 (2010). ArticleCAS Google Scholar
Squarize, C. H., Castilho, R. M. & Gutkind, J. S. Chemoprevention and treatment of experimental Cowden's disease by mTOR inhibition with rapamycin. Cancer Res.68, 7066–7072 (2008). ArticleCASPubMed Google Scholar
Zhang, W. et al. Inhibition of tumor growth progression by antiandrogens and mTOR inhibitor in a Pten-deficient mouse model of prostate cancer. Cancer Res.69, 7466–7472 (2009). ArticleCASPubMed Google Scholar
Granville, C. A. et al. Identification of a highly effective rapamycin schedule that markedly reduces the size, multiplicity, and phenotypic progression of tobacco carcinogen-induced murine lung tumors. Clin. Cancer Res.13, 2281–2289 (2007). ArticleCASPubMed Google Scholar
Stelzer, M. K. et al. Rapamycin inhibits anal carcinogenesis in two preclinical animal models. Cancer Prev. Res.3, 1542–1551 (2010). ArticleCAS Google Scholar
Cen, O. & Longnecker, R. Rapamycin reverses splenomegaly and inhibits tumor development in a transgenic model of Epstein-Barr Virus-related Burkitt's lymphoma. Mol. Cancer Ther. 31 Jan 2011 (doi: 10.1158/1535-7163.MCT-10-0833).
Seager, C. M. et al. Intravesical delivery of rapamycin suppresses tumorigenesis in a mouse model of progressive bladder cancer. Cancer Prev. Res.2, 1008–1014 (2009). ArticleCAS Google Scholar
Namba, R. et al. Rapamycin inhibits growth of premalignant and malignant mammary lesions in a mouse model of ductal carcinoma in situ.Clin. Cancer Res.12, 2613–2621 (2006). ArticleCASPubMed Google Scholar
Diegel, C. R., Cho, K. R., El-Naggar, A. K., Williams, B. O. & Lindvall, C. Mammalian target of rapamycin-dependent acinar cell neoplasia after inactivation of Apc and Pten in the mouse salivary gland: implications for human acinic cell carcinoma. Cancer Res.70, 9143–9152 (2010). ArticleCASPubMed Google Scholar
Chiu, C. W., Nozawa, H. & Hanahan, D. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. J. Clin. Oncol.28, 4425–4433 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chresta, C. M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res.70, 288–298 (2010). ArticleCASPubMed Google Scholar
Richards, D. A. et al. Final results of a randomized phase II study of perifosine in combination with capecitabine (P-CAP) versus placebo plus capecitabine (CAP) in patients (pts) with second- or third-line metastatic colorectal cancer (mCRC). Am. Soc. Clin. Oncol. Abstr.28, 3531 (2010). Article Google Scholar
Hideshima, T. et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood107, 4053–4062 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, Z., Tan, F., Liewehr, D. J., Steinberg, S. M. & Thiele, C. J. In vitro and in vivo inhibition of neuroblastoma tumor cell growth by AKT inhibitor perifosine. J. Natl Cancer Inst.102, 758–770 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tolcher, A. W. et al. A phase I study of MK-2206, an oral potent allosteric Akt inhibitor (Akti), in patients (pts) with advanced solid tumor (ST). Am. Soc. Clin. Oncol. Abstr.27, 3503 (2009). ArticleCAS Google Scholar
Hirai, H. et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol. Cancer Ther.9, 1956–1967 (2010). ArticleCASPubMed Google Scholar
Mao, J. H. et al. Genetic interactions between Pten and p53 in radiation-induced lymphoma development.. Oncogene22, 8379–8385 (2003). ArticleCASPubMed Google Scholar
Birck, A., Ahrenkiel, V., Zeuthen, J., Hou-Jensen, K. & Guldberg, P. . Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J. Invest. Dermatol.114, 277–280 (2000). ArticleCASPubMed Google Scholar
Celebi, J. T., Shendrik, I., Silvers, D. N. & Peacocke, M. . Identification of PTEN mutations in metastatic melanoma specimens.. J. Med. Genet.37, 653–657 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rahman, M. A. et al. Impact of PTEN expression on the outcome of hepatitis C virus-positive cirrhotic hepatocellular carcinoma patients: possible relationship with COX II and inducible nitric oxide synthase. Int. J. Cancer100, 152–157 (2002). ArticleCASPubMed Google Scholar
Shao, J., Washington, M. K., Saxena, R. & Sheng, H. et al. Heterozygous disruption of the PTEN promotes intestinal neoplasia in APCmin/+ mouse: roles of osteopontin. Carcinogenesis28, 2476–2483 (2007). ArticleCASPubMed Google Scholar
Zhou, X. P. et al. PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers. Am. J. Pathol.161, 439–447 (2002). ArticleCASPubMedPubMed Central Google Scholar
Heald, B. et al. Frequent gastrointestinal polyps and colorectal adenocarcinomas in a prospective series of PTEN mutation carriers. Gastroenterology139, 1927–1933 (2010). ArticleCASPubMed Google Scholar