Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? (original) (raw)
Hanahan, D. & Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell86, 353–364 (1996). ArticleCASPubMed Google Scholar
Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature339, 58–61 (1989). ArticleCASPubMed Google Scholar
Tlsty, T. D. Stromal cells can contribute oncogenic signals. Semin. Cancer Biol.11, 97–104 (2001). ArticleCASPubMed Google Scholar
Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature407, 249–257 (2000). ArticleCASPubMed Google Scholar
Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature407, 242–248 (2000). ArticleCASPubMed Google Scholar
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med.1, 27–31 (1995). ArticleCASPubMed Google Scholar
Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and haematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med.7, 1194–1201 (2001).Demonstrates the significance of mobilization and incorporation of circulating endothelial precursor and haematopoietic cells in supporting tumour angiogenesis. Transplantation and engraftment of wild-type bone marrow into tumour-resistantId-mutant mice results in the restoration of tumour angiogenesis and growth. ArticleCASPubMed Google Scholar
Reyes, M. et al. Origin of endothelial progenitors in human postnatal bone marrow. J. Clin. Invest.109, 337–346 (2002).Demonstration that human endothelial cells derived from CD133+ multipotential adult progenitor (MAPC) cells injected into immunocompromised mice have the potential to contribute to tumour angiogenesis of xenotransplanted, as well as spontaneous, tumours. ArticleCASPubMedPubMed Central Google Scholar
Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85, 221–228 (1999). ArticleCASPubMed Google Scholar
Gehling, U. M. et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood95, 3106–3112 (2000). ArticleCASPubMed Google Scholar
Marchetti, S. et al. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J. Cell Sci.115, 2075–2085 (2002). ArticleCASPubMed Google Scholar
Davidoff, A. M. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin. Cancer Res.7, 2870–2879 (2001). CASPubMed Google Scholar
Ito, H. et al. Endothelial progenitor cells as putative targets for angiostatin. Cancer Res.59, 5875–5877 (1999). CASPubMed Google Scholar
Arafat, W. O. et al. Genetically modified CD34+ cells exert a cytotoxic bystander effect on human endothelial and cancer cells. Clin. Cancer Res.6, 4442–4448 (2000). CASPubMed Google Scholar
Carmeliet, P. & Luttun, A. The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb. Haemost.86, 289–297 (2001). ArticleCASPubMed Google Scholar
Dvorak, H. F., Nagy, J. A., Dvorak, J. T. & Dvorak, A. M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol.133, 95–109 (1988). CASPubMedPubMed Central Google Scholar
Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol.160, 985–1000 (2002). ArticlePubMedPubMed Central Google Scholar
Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science284, 808–812 (1999). ArticleCASPubMed Google Scholar
Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science284, 1994–1998 (1999).Shows the role of vessel co-option in supporting tumour angiogenesis. The TIE2/angiopoietin signalling pathway is involved in the remodelling during co-option process. ArticleCASPubMed Google Scholar
Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science246, 1306–1309 (1989). ArticleCASPubMed Google Scholar
Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature362, 841–844 (1993). ArticleCASPubMed Google Scholar
Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCASPubMed Google Scholar
Terman, B. I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun.187, 1579–1586 (1992). ArticleCASPubMed Google Scholar
Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J.13, 9–22 (1999). ArticleCASPubMed Google Scholar
Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature367, 576–579 (1994). ArticleCASPubMed Google Scholar
Pepper, M. S. & Mandriota, S. J. Regulation of vascular endothelial growth factor receptor-2 (Flk-1) expression in vascular endothelial cells. Exp. Cell Res.241, 414–425 (1998). ArticleCASPubMed Google Scholar
Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature376, 66–70 (1995). ArticleCASPubMed Google Scholar
Hiratsuka, S. et al. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res.61, 1207–1213 (2001). CASPubMed Google Scholar
Benjamin, L. E. & Keshet, E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc. Natl Acad. Sci. USA94, 8761–8766 (1997). ArticleCASPubMedPubMed Central Google Scholar
Benjamin, L. E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest.103, 159–165 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mandriota, S. J. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J.20, 672–682 (2001). ArticleCASPubMedPubMed Central Google Scholar
Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Med.7, 192–198 (2001). ArticleCASPubMed Google Scholar
Makinen, T. et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nature Med.7, 199–205 (2001). ArticleCASPubMed Google Scholar
Hendrix, M. J. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl Acad. Sci. USA98, 8018–8023 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chang, Y. S. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl Acad. Sci. USA97, 14608–14613 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature401, 670–677 (1999).Reports thatId-mutant mice fail to support the growth of xenotransplanted tumours. The mechanism for tumour resistance inId-mutant mice is mainly due to defects in tumour angiogenesis. ArticleCASPubMed Google Scholar
Segal, M. S., Bihorac, A. & Koc, M. Circulating endothelial cells: tea leaves for renal disease. Am. J. Physiol. Renal Physiol.283, F11–F19 (2002). ArticleCASPubMed Google Scholar
Mutunga, M. et al. Circulating endothelial cells in patients with septic shock. Am. J. Respir. Crit. Care Med.163, 195–200 (2001). ArticleCASPubMed Google Scholar
George, F. et al. Demonstration of Rickettsia conorii-induced endothelial injury in vivo by measuring circulating endothelial cells, thrombomodulin, and von Willebrand factor in patients with Mediterranean spotted fever. Blood82, 2109–2116 (1993). ArticleCASPubMed Google Scholar
Lefevre, P., George, F., Durand, J. M. & Sampol, J. Detection of circulating endothelial cells in thrombotic thrombocytopenic purpura. Thromb. Haemost.69, 522 (1993). CASPubMed Google Scholar
Shi, Q. et al. Proof of fallout endothelialization of impervious Dacron grafts in the aorta and inferior vena cava of the dog. J. Vasc. Surg.20, 546–556 (1994). ArticleCASPubMed Google Scholar
Solovey, A. et al. Circulating activated endothelial cells in sickle cell anemia. N. Engl. J. Med.337, 1584–1590 (1997). ArticleCASPubMed Google Scholar
Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275, 964–967 (1997).Shows that bone-marrow-derived endothelial progenitors can contribute to post-natal angiogenic processes, including hind-limb ischaemia. ArticleCASPubMed Google Scholar
Shi, Q. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood92, 362–367 (1998).Shows that bone-marrow-derived cells can contribute to the endothelialization of the Dacron grafts. Most of the endothelial cells on the surface of the implanted Dacron grafts originated from the transplanted donor bone-marow-derived endothelial cells. ArticleCASPubMed Google Scholar
Lin, Y., Weisdorf, D. J., Solovey, A. & Hebbel, R. P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest.105, 71–77 (2000).Shows the potential of bone-marrow-derived circulating endothelial precursor cells to generate late outgrowth highly proliferative endothelial monolayers. By contrast, circulating endothelial cells and vascular-wall-derived endothelial cells gave rise to early outgrowth endothelial cells with limited proliferative potential. ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Med.5, 434–438 (1999). ArticleCASPubMed Google Scholar
Rafii, S. et al. Characterization of haematopoietic cells arising on the textured surface of left ventricular assist devices. Ann. Thorac. Surg.60, 1627–1632 (1995). ArticleCASPubMed Google Scholar
Gill, M. et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ. Res.88, 167–174 (2001). ArticleCASPubMed Google Scholar
Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood95, 952–958 (2000).This report, in conjunction with references11and54, shows that CD133 is expressed on the circulating endothelial precursor cells, and its expression diminishes after differentiation to adherent mature endothelial cells. ArticleCASPubMed Google Scholar
Quirici, N. et al. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br. J. Haematol.115, 186–194 (2001). ArticleCASPubMed Google Scholar
Miraglia, S. et al. A novel five-transmembrane haematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood90, 5013–5021 (1997). ArticleCASPubMed Google Scholar
Yin, A. H. et al. AC133, a novel marker for human haematopoietic stem and progenitor cells. Blood90, 5002–5012 (1997). ArticleCASPubMed Google Scholar
Miraglia, S., Godfrey, W. & Buck, D. A response to AC133 haematopoietic stem cell antigen: human homologue of mouse kidney prominin or distinct member of a novel protein family? Blood91, 4390–4391 (1998). ArticleCASPubMed Google Scholar
Coffin, J. D., Harrison, J., Schwartz, S. & Heimark, R. Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev. Biol.148, 51–62 (1991). ArticleCASPubMed Google Scholar
Robert, B., St John, P. L., Hyink, D. P. & Abrahamson, D. R. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am. J. Physiol.271, F744–F753 (1996). CASPubMed Google Scholar
Caprioli, A., Jaffredo, T., Gautier, R., Dubourg, C. & Dieterlen-Lievre, F. Blood-borne seeding by haematopoietic and endothelial precursors from the allantois. Proc. Natl Acad. Sci. USA95, 1641–1646 (1998). ArticleCASPubMedPubMed Central Google Scholar
Mancuso, P. et al. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood97, 3658–3661 (2001). ArticleCASPubMed Google Scholar
Monestiroli, S. et al. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res.61, 4341–4344 (2001). CASPubMed Google Scholar
Cameliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med.7, 575–583 (2001). ArticleCAS Google Scholar
Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Med.1, 1 (2002). Google Scholar
Polverini, P. J. & Leibovich, S. J. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab. Invest.51, 635–642 (1984). CASPubMed Google Scholar
Polverini, P. J., Cotran, P. S., Gimbrone, M. A. Jr & Unanue, E. R. Activated macrophages induce vascular proliferation. Nature269, 804–806 (1977). ArticleCASPubMed Google Scholar
Dahlqvist, K., Umemoto, E. Y., Brokaw, J. J., Dupuis, M. & McDonald, D. M. Tissue macrophages associated with angiogenesis in chronic airway inflammation in rats. Am. J. Respir. Cell. Mol. Biol.20, 237–247 (1999). ArticleCASPubMed Google Scholar
Ezaki, T. et al. Time course of endothelial cell proliferation and microvascular remodeling in chronic inflammation. Am. J. Pathol.158, 2043–2055 (2001). ArticleCASPubMedPubMed Central Google Scholar
McDonald, D. M. Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am. J. Respir. Crit. Care Med.164, S39–S45 (2001). ArticleCASPubMed Google Scholar
Leibovich, S. J. et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature329, 630–632 (1987). ArticleCASPubMed Google Scholar
Di Pietro, L. A. & Polverini, P. J. Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am. J. Pathol.143, 678–684 (1993). CAS Google Scholar
Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell103, 481–490 (2000).Shows the essential role of tumour-associated macrophages in supporting tumour growth. MMP-9 that is supplied by tumour-infiltrating macrophages restores impaired tumour growth in Mmp-9-deficient mice. This indicates that MMP-9, provided by bone-marrow-derived cells, is necessary for tumour growth. ArticleCASPubMedPubMed Central Google Scholar
Takakura, N. et al. A role for haematopoietic stem cells in promoting angiogenesis. Cell102, 199–209 (2000). ArticleCASPubMed Google Scholar
Donovan, M. J. et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development127, 4531–4540 (2000). ArticleCASPubMed Google Scholar
Skobe, M. et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am. J. Pathol.159, 893–903 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kadambi, A. et al. Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res.61, 2404–2408 (2001). CASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell105, 369–377 (2001). ArticleCASPubMed Google Scholar
Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell105, 829–841 (2001). ArticleCASPubMed Google Scholar
Cheng, T. et al. Haematopoietic stem cell quiescence maintained by p21Cip1/Waf1. Science287, 1804–1808 (2000). ArticleCASPubMed Google Scholar
Vu, T. H. & Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev.14, 2123–2133 (2000). ArticleCASPubMed Google Scholar
Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol.2, 737–744 (2000). ArticleCASPubMed Google Scholar
Engsig, M. T. et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J. Cell Biol.151, 879–890 (2000). ArticleCASPubMedPubMed Central Google Scholar
Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires Mmp-9 mediated release of Kit-ligand. Cell109, 625–637 (2002).Shows the mechanism by which bone-marrow-derived stem and progenitor cells are recruited from the bone-marrow microenvironment to the peripheral circulation. Physiological stressors, including bone-marrow suppression or elevation of angiogenic factors, induce MMP-9, resulting in the release of soluble KIT ligand, driving the proliferation and mobilization of stem and progenitor cells. ArticleCASPubMedPubMed Central Google Scholar
Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and haematopoietic stem cells. J. Exp. Med.193, 1005–1014 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ziegler, B. L. et al. KDR receptor: a key marker defining haematopoietic stem cells. Science285, 1553–1558 (1999). ArticleCASPubMed Google Scholar
Sawano, A. et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood97, 785–791 (2001). ArticleCASPubMed Google Scholar
Clauss, M. et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem.271, 17629–17634 (1996). ArticleCASPubMed Google Scholar
Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood87, 3336–3343 (1996). ArticleCASPubMed Google Scholar
Cho, N. K. et al. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell108, 865–876 (2002). ArticleCASPubMed Google Scholar
Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nature Med.1, 1 (2002).Defines the mechanism by which angiogenic factors, including placental-derived growth factor (PlGF) and vascular endothelial growth factor (VEGF), recruit haematopoietic cells from bone marrow to the tumour vasculature. VEGFR1 is expressed on haematopoietic stem and progenitor cells and conveys signals that promote motility and MMP-9-mediated release of sKitL, thereby directing mobilization of these cells to the peripheral circulation. Google Scholar
Gerber, H. P. et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature417, 954–958 (2002).Shows the expression of VEGF receptors, including VEGFR1, on the haematopoietic stem cells, conveying signals that support proliferation and survival of these cells through a novel intrakine signalling mechanism. ArticleCASPubMed Google Scholar
Eriksson, U. & Alitalo, K. VEGF receptor 1 stimulates stem-cell recruitment and new hope for angiogenesis therapies. Nature Med.8, 775–777 (2002). ArticleCASPubMed Google Scholar
Dias, S. et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc. Natl Acad. Sci. USA98, 10857–10862 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dias, S. et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J. Clin. Invest.106, 511–521 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gomez-Navarro, J. et al. Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Ther.7, 43–52 (2000). ArticleCASPubMed Google Scholar
Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA99, 4391–4396 (2002). ArticleCASPubMedPubMed Central Google Scholar
Vittet, D. et al. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood88, 3424–3431 (1996). ArticleCASPubMed Google Scholar
Kabrun, N. et al. Flk-1 expression defines a population of early embryonic haematopoietic precursors. Development124, 2039–2048 (1997). ArticleCASPubMed Google Scholar
Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C. & Keller, G. A common precursor for haematopoietic and endothelial cells. Development125, 725–732 (1998). ArticleCASPubMed Google Scholar
Hirashima, M., Kataoka, H., Nishikawa, S., Matsuyoshi, N. & Nishikawa, S. Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood93, 1253–1263 (1999). ArticleCASPubMed Google Scholar
Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature408, 92–96 (2000). ArticleCASPubMed Google Scholar
Wijelath, E. S. et al. Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ. Res.91, 25–31 (2002).Demonstrates the capacity of fibronectin to bind to VEGF. Co-engagment of VEGFA/fibronectin with the VEGFR2/integrin complex that is expressed on endothelial cells can potentiate VEGF signalling. ArticleCASPubMed Google Scholar