Johnsen, H. E. et al. Cancer stem cells and the cellular hierarchy in haematological malignancies. Eur. J. Cancer45 (Suppl. 1), 194–201 (2009). ArticlePubMed Google Scholar
McGovern, M., Voutev, R., Maciejowski, J., Corsi, A. K. & Hubbard, E. J. A “latent niche” mechanism for tumor initiation. Proc. Natl Acad. Sci. USA106, 11617–11622 (2009). ArticleCASPubMedPubMed Central Google Scholar
Peacock, C. D. et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl Acad. Sci. USA104, 4048–4053 (2007). ArticleCASPubMedPubMed Central Google Scholar
Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat. Rev. Cancer5, 744–749 (2005). ArticleCASPubMed Google Scholar
Dieter, S. M. et al. Distinct types of human colon cancer initiating cells contribute to primary tumor and metastasis formation [abstract 9]. Proc. Am. Assoc. Cancer Res. (2010).
Schmidt, M. et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood100, 2737–2743 (2002). ArticleCASPubMed Google Scholar
Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994). ArticleCASPubMed Google Scholar
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3, 730–737 (1997). ArticleCASPubMed Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). ArticleCASPubMed Google Scholar
Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA104, 10158–10163 (2007). ArticleCASPubMedPubMed Central Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). ArticleCASPubMed Google Scholar
Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007). ArticleCASPubMed Google Scholar
Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA104, 973–978 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell1, 313–323 (2007). ArticleCASPubMed Google Scholar
Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res.67, 1030–1037 (2007). ArticleCASPubMed Google Scholar
Yamashita, T. et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology136, 1012–1024 (2009). ArticleCASPubMed Google Scholar
Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell13, 153–166 (2008). ArticleCASPubMed Google Scholar
Bertolini, G. et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl Acad. Sci. USA106, 16281–16286 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res.68, 4311–4320 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA106, 14016–14021 (2009). ArticleCASPubMedPubMed Central Google Scholar
Suvà, M. L. et al. Identification of cancer stem cells in Ewing's sarcoma. Cancer Res.69, 1776–1781 (2009). ArticlePubMedCAS Google Scholar
Huang, E. H. et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res.69, 3382–3389 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z. et al. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res.66, 2778–2784 (2006). ArticleCASPubMed Google Scholar
Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature442, 818–822 (2006). ArticleCASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004). ArticleCASPubMed Google Scholar
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science284, 770–776 (1999). ArticleCASPubMed Google Scholar
Dontu, G. et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res.6, R605–R615 (2004). ArticleCASPubMedPubMed Central Google Scholar
Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature442, 823–826 (2006). ArticleCASPubMed Google Scholar
Rampal, R., Arboleda-Velasquez, J. F., Nita-Lazar, A., Kosik, K. S. & Haltiwanger, R. S. Highly conserved O-fucose sites have distinct effects on Notch1 function. J. Biol. Chem.280, 32133–32140 (2005). ArticleCASPubMed Google Scholar
Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol.14, 295–300 (2007). ArticleCASPubMed Google Scholar
Real, P. J. et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat. Med.15, 50–58 (2009). ArticleCASPubMed Google Scholar
Rizzo, P. et al. Rational targeting of Notch signaling in cancer. Oncogene27, 5124–5131 (2008). ArticleCASPubMed Google Scholar
Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA104, 3225–3230 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature444, 1083–1087 (2006). ArticleCASPubMed Google Scholar
Epenetos, A., Kousparou, C. & Stylianou, S. Inhibition of Notch signaling for the treatment of human carcinomas. AACR Meeting Abstracts A5502 (2009).
Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature464, 1052–1057 (2010). ArticleCASPubMed Google Scholar
Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev.15, 3059–3087 (2001). ArticleCASPubMed Google Scholar
Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85, 841–851 (1996). ArticleCASPubMed Google Scholar
Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science272, 1668–1671 (1996). ArticleCASPubMed Google Scholar
Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature455, 406–410 (2008). ArticleCASPubMed Google Scholar
Micchelli, C. A., The, I., Selva, E., Mogila, V. & Perrimon, N. Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development129, 843–851 (2002). CASPubMed Google Scholar
Ruiz i Altaba, A., Mas, C. & Stecca, B. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol.17, 438–447 (2007). ArticleCASPubMedPubMed Central Google Scholar
Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature425, 962–967 (2003). ArticleCASPubMedPubMed Central Google Scholar
Adesina, A. M. et al. Gene expression profiling reveals signatures characterizing histologic subtypes of hepatoblastoma and global deregulation in cell growth and survival pathways. Hum. Pathol.40, 843–853 (2009). ArticleCASPubMedPubMed Central Google Scholar
Feldmann, G. et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res.67, 2187–2196 (2007). ArticleCASPubMedPubMed Central Google Scholar
Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature406, 1005–1009 (2000). ArticleCASPubMed Google Scholar
Kiselyov, A. S. Targeting the hedgehog signaling pathway with small molecules. Anticancer Agents Med. Chem.6, 445–449 (2006). ArticleCASPubMed Google Scholar
Rubin, L. L. & de Sauvage, F. J. Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov.5, 1026–1033 (2006). ArticleCASPubMed Google Scholar
Stanton, B. Z. et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat. Chem. Biol.5, 154–156 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hyman, J. M. et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl Acad. Sci. USA106, 14132–14137 (2009). ArticleCASPubMedPubMed Central Google Scholar
Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science324, 1457–1461 (2009). ArticleCASPubMedPubMed Central Google Scholar
LoRusso, P. M. et al. A first-in-human, first-in-class, phase (ph) I study of systemic Hedgehog (Hh) pathway antagonist, GDC-0449, in patients (pts) with advanced solid tumors [abstract]. J. Clin. Oncol.26, a3516 (2008). Article Google Scholar
Von Hoff, D. D. et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med.361, 1164–1172 (2009). ArticleCASPubMed Google Scholar
Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol.10, 468–477 (2009). ArticleCASPubMed Google Scholar
Grigoryan, T., Wend, P., Klaus, A. & Birchmeier, W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev.22, 2308–2341 (2008). ArticleCASPubMedPubMed Central Google Scholar
Andrade, A. C., Nilsson, O., Barnes, K. M. & Baron, J. Wnt gene expression in the post-natal growth plate: regulation with chondrocyte differentiation. Bone40, 1361–1369 (2007). ArticleCASPubMedPubMed Central Google Scholar
Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell11, 791–801 (2006). ArticleCASPubMed Google Scholar
Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl Acad. Sci. USA96, 3546–3551 (1999). ArticleCASPubMedPubMed Central Google Scholar
Schulte, G. & Bryja, V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol. Sci.28, 518–525 (2007). ArticleCASPubMed Google Scholar
de La Coste, A. et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl Acad. Sci. USA95, 8847–8851 (1998). ArticleCASPubMed Google Scholar
Kim, M. S., Kim, S. S., Ahn, C. H., Yoo, N. J. & Lee, S. H. Frameshift mutations of Wnt pathway genes AXIN2 and TCF7L2 in gastric carcinomas with high microsatellite instability. Hum. Pathol.40, 58–64 (2009). ArticleCASPubMed Google Scholar
Koesters, R. et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms' tumors. Cancer Res.59, 3880–3882 (1999). CASPubMed Google Scholar
Martin, V. et al. Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci.101, 425–432 (2010). ArticleCASPubMed Google Scholar
Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature452, 650–653 (2008). ArticleCASPubMed Google Scholar
Majeti, R. et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc. Natl Acad. Sci. USA106, 3396–3401 (2009). ArticleCASPubMedPubMed Central Google Scholar
Müller-Tidow, C. et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol. Cell Biol.24, 2890–2904 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol.5, 100–107 (2009). ArticleCASPubMedPubMed Central Google Scholar
Emami, K. H. et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc. Natl Acad. Sci. USA101, 12682–12687 (2004). ArticleCASPubMedPubMed Central Google Scholar
Takahashi-Yanaga, F. & Kahn, M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin. Cancer Res.16, 3153–3162 (2010). ArticleCASPubMed Google Scholar
Fujii, N. et al. An antagonist of dishevelled protein-protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res.67, 573–579 (2007). ArticleCASPubMed Google Scholar
Shan, J., Shi, D. L., Wang, J. & Zheng, J. Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry44, 15495–15503 (2005). ArticleCASPubMed Google Scholar
He, B. et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene24, 3054–3058 (2005). ArticleCASPubMed Google Scholar
You, L. et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res.64, 5385–5389 (2004). ArticleCASPubMed Google Scholar
Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell139, 871–890 (2009). ArticleCASPubMed Google Scholar
Shook, D. & Keller, R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech. Dev.120, 1351–1383 (2003). ArticleCASPubMed Google Scholar
Kim, M. A. et al. Prognostic importance of epithelial-mesenchymal transition-related protein expression in gastric carcinoma. Histopathology54, 442–451 (2009). ArticlePubMed Google Scholar
Mareel, M. et al. E-cadherin/catenin/cytoskeleton complex: a regulator of cancer invasion. J. Cell Physiol.173, 271–274 (1997). ArticleCASPubMed Google Scholar
Dissanayake, S. K. et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem.282, 17259–17271 (2007). ArticleCASPubMed Google Scholar
Vincan, E. & Barker, N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin. Exp. Metastasis25, 657–663 (2008). ArticleCASPubMed Google Scholar
Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell14, 818–829 (2008). ArticleCASPubMed Google Scholar
Bailey, J. M., Singh, P. K. & Hollingsworth, M. A. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J. Cell Biochem.102, 829–839 (2007). ArticleCASPubMed Google Scholar
Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst.100, 672–679 (2008). ArticleCASPubMed Google Scholar
Frank, N. Y. et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res.65, 4320–4333 (2005). ArticleCASPubMed Google Scholar
Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. & Gottesman, M. M. P-glycoprotein: from genomics to mechanism. Oncogene22, 7468–7485 (2003). ArticleCASPubMed Google Scholar
Itasaki, N. & Hoppler, S. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev. Dyn.239, 16–33 (2010). CASPubMed Google Scholar
Sun, L., Tian, Z. & Wang, J. A direct cross-talk between interferon-gamma and sonic hedgehog signaling that leads to the proliferation of neuronal precursor cells. Brain Behav. Immun.24, 220–228 (2010). ArticleCASPubMed Google Scholar
Vivekanand, P. & Rebay, I. Intersection of signal transduction pathways and development. Annu. Rev. Genet.40, 139–157 (2006). ArticleCASPubMed Google Scholar
Ma, J. et al. Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade. J. Clin. Invest.120, 103–114 (2010). ArticleCASPubMed Google Scholar
Wang, Z. et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J. Cell. Biochem.109, 726–736 (2010). CASPubMed Google Scholar
Meurette, O. et al. Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res.69, 5015–5022 (2009). ArticleCASPubMed Google Scholar
Dai, J. et al. Cross-talk between Notch and EGFR signaling in human breast cancer cells. Cancer Invest.27, 533–540 (2009). ArticleCASPubMed Google Scholar
Purow, B. W. et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis29, 918–925 (2008). ArticleCASPubMedPubMed Central Google Scholar
Deb, S. P., Muñoz, R. M., Brown, D. R., Subler, M. A. & Deb, S. Wild-type human p53 activates the human epidermal growth factor receptor promoter. Oncogene9, 1341–1349 (1994). CASPubMed Google Scholar
Mellinghoff, I. K. et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353, 2012–2024 (2005). ArticleCASPubMed Google Scholar
Osipo, C. et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene27, 5019–5032 (2008). ArticleCASPubMed Google Scholar
Hirose, H. et al. Notch pathway as candidate therapeutic target in Her2/Neu/ErbB2 receptor-negative breast tumors. Oncol. Rep.23, 35–43 (2010). CASPubMed Google Scholar
Guo, X. & Wang, X. F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res.19, 71–88 (2009). ArticleCASPubMed Google Scholar
Zavadil, J., Cermak, L., Soto-Nieves, N. & Böttinger, E. P. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J.23, 1155–1165 (2004). ArticleCASPubMedPubMed Central Google Scholar
He, J. et al. Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J. Biol. Chem.281, 35598–35602 (2006). ArticleCASPubMed Google Scholar
Deangelo, D. J. et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias [abstract]. J. Clin. Oncol.24, a6585 (2006). Google Scholar
Peters, J. U. et al. Novel orally active, dibenzazepinone-based gamma-secretase inhibitors. Bioorg Med. Chem. Lett.17, 5918–5923 (2007). ArticleCASPubMed Google Scholar
Kopan, R. & Ilagan, M. X. Gamma-secretase: proteasome of the membrane? Nat. Rev. Mol. Cell Biol.5, 499–504 (2004). ArticleCASPubMed Google Scholar
Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem.283, 8046–8054 (2006). ArticleCAS Google Scholar
Hoey, T. et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell5, 168–177 (2009). ArticleCASPubMed Google Scholar
Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature444, 1032–1037 (2006). ArticleCASPubMed Google Scholar
Garcés, C. et al. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J. Biol. Chem.272, 29729–29734 (1997). ArticlePubMed Google Scholar
Nickoloff, B. J. et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ.9, 842–855 (2002). ArticleCASPubMed Google Scholar
Rudin, C. M., Hann, C. L., Peacock, C. D. & Watkins, D. N. Novel systemic therapies for small cell lung cancer. J. Natl Compr. Canc. Netw.6, 315–322 (2008). ArticleCASPubMedPubMed Central Google Scholar
Barginear, M. F., Leung, M. & Budman, D. R. The hedgehog pathway as a therapeutic target for treatment of breast cancer. Breast Cancer Res. Treat.116, 239–246 (2009). ArticleCASPubMed Google Scholar
Fukukawa, C. Katagiri, T., Nakatsuru, S. & Nakamura, Y. Therapeutic potential of antibodies against frizzled homologue 10, a cell-surface protein, for synovial sarcoma [abstract]. Proc. Amer. Assoc. Cancer Res.47, 1975 (2006). Google Scholar
Yoshizumi, T. et al. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. Int. J. Oncol.25, 631–639 (2004). CASPubMed Google Scholar
Arber, N. et al. Celecoxib for the prevention of colorectal adenomatous polyps. N. Engl. J. Med.355, 885–895 (2006). ArticleCASPubMed Google Scholar
van Stolk, R. et al. Phase I trial of exisulind (sulindac sulfone, FGN-1) as a chemopreventive agent in patients with familial adenomatous polyposis. Clin. Cancer Res.6, 78–89 (2000). CASPubMed Google Scholar
Cong, F., Zhang, J., Pao, W., Zhou, P. & Varmus, H. A protein knockdown strategy to study the function of beta-catenin in tumorigenesis. BMC Mol. Biol.4, 10 (2003). ArticlePubMedPubMed Central Google Scholar
Liu, J., Stevens, J., Matsunami, N. & White, R. L. Targeted degradation of beta-catenin by chimeric F-box fusion proteins. Biochem. Biophys. Res. Commun.313, 1023–1029 (2004). ArticleCASPubMed Google Scholar
Nagao, R. et al. A novel β-catenin inhibitor, AV65 suppresses the growth of CML cell lines which acquire imatinib-resistance because of Abl kinase domain mutations including T315I and hypoxia-adaptation. 50thASH Annual Meeting and Exposition Abstracts, 1081 (2008). Google Scholar
Su, Y., Ishikawa, S., Kojima, M. & Liu, B. Eradication of pathogenic beta-catenin by Skp1/Cullin/F box ubiquitination machinery. Proc. Natl Acad. Sci. USA100, 12729–12734 (2003). ArticleCASPubMedPubMed Central Google Scholar