Therapeutic targeting of microRNAs: current status and future challenges (original) (raw)
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). ArticleCASPubMed Google Scholar
Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001). CASPubMed Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). CASPubMed Google Scholar
Ambros, V. The functions of animal microRNAs. Nature431, 350–355 (2004). CASPubMed Google Scholar
Klattenhoff, C. & Theurkauf, W. Biogenesis and germline functions of piRNAs. Development135, 3–9 (2008). CASPubMed Google Scholar
Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science320, 1077–1081 (2008). CASPubMedPubMed Central Google Scholar
Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA101, 11755–11760 (2004). CASPubMedPubMed Central Google Scholar
Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA101, 2999–3004 (2004). CASPubMedPubMed Central Google Scholar
Farazi, T. A., Spitzer, J. I., Morozov, P. & Tuschl, T. miRNAs in human cancer. J. Pathol.223, 102–115 (2011). CASPubMed Google Scholar
van Rooij, E. & Olson, E. N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nature Rev. Drug Discov.11, 860–872 (2012). CAS Google Scholar
O'Connell, R. M., Rao, D. S., Chaudhuri, A. A. & Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nature Rev. Immunol.10, 111–122 (2010). CAS Google Scholar
Esau, C. C. Inhibition of microRNA with antisense oligonucleotides. Methods44, 55–60 (2008). CASPubMed Google Scholar
Lennox, K. A. & Behlke, M. A. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther.18, 1111–1120 (2011). CASPubMed Google Scholar
Bumcrot, D., Manoharan, M., Koteliansky, V. & Sah, D. W. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chem. Biol.2, 711–719 (2006). CAS Google Scholar
Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science327, 198–201 (2010). CASPubMed Google Scholar
Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). PubMed Google Scholar
Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature452, 896–899 (2008). CASPubMed Google Scholar
Li, Z. & Rana, T. M. Molecular mechanisms of RNA-triggered gene silencing machineries. Accounts Chem. Res.45, 1122–1131 (2012). CAS Google Scholar
Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature Rev. Genet.11, 597–610 (2010). CASPubMed Google Scholar
Triboulet, R., Chang, H. M., Lapierre, R. J. & Gregory, R. I. Post-transcriptional control of DGCR8 expression by the microprocessor. RNA15, 1005–1011 (2009). CASPubMedPubMed Central Google Scholar
Gregory, R. I. et al. The microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). CASPubMed Google Scholar
Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature436, 740–744 (2005). CASPubMedPubMed Central Google Scholar
Melo, S. A. et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genet.41, 365–370 (2009). CASPubMed Google Scholar
Paroo, Z., Ye, X., Chen, S. & Liu, Q. Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell139, 112–122 (2009). CASPubMedPubMed Central Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). CASPubMed Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). CASPubMed Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). CASPubMed Google Scholar
Pillai, R. S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science309, 1573–1576 (2005). CASPubMed Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). CASPubMed Google Scholar
Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell21, 533–542 (2006). CASPubMed Google Scholar
Lytle, J. R., Yario, T. A. & Steitz, J. A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Natl Acad. Sci. USA104, 9667–9672 (2007). CASPubMedPubMed Central Google Scholar
Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell122, 553–563 (2005). CASPubMed Google Scholar
Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466, 835–840 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nature Cell Biol.7, 1261–1266 (2005). PubMed Google Scholar
Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nature Struct. Mol. Biol.15, 346–353 (2008). CAS Google Scholar
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.20, 1885–1898 (2006). CASPubMedPubMed Central Google Scholar
Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol.4, e210 (2006). PubMedPubMed Central Google Scholar
Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol.1, E60 (2003). PubMedPubMed Central Google Scholar
Grun, D., Wang, Y. L., Langenberger, D., Gunsalus, K. C. & Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol.1, e13 (2005). PubMedPubMed Central Google Scholar
Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics8, 69 (2007). PubMedPubMed Central Google Scholar
Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol.12, 247–256 (2010). CASPubMed Google Scholar
Li, Z., Yang, C. S., Nakashima, K. & Rana, T. M. Small RNA-mediated regulation of iPS cell generation. EMBO J.30, 823–834 (2011). PubMedPubMed Central Google Scholar
Papagiannakopoulos, T., Shapiro, A. & Kosik, K. S. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res.68, 8164–8172 (2008). CASPubMed Google Scholar
Johnson, C. D. et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res.67, 7713–7722 (2007). CASPubMed Google Scholar
Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods4, 721–726 (2007). CASPubMed Google Scholar
Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell147, 344–357 (2011). CASPubMedPubMed Central Google Scholar
Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147, 358–369 (2011). CASPubMedPubMed Central Google Scholar
Karreth, F. A. et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell147, 382–395 (2011). CASPubMedPubMed Central Google Scholar
Gumireddy, K. et al. Small-molecule inhibitors of microRNA miR-21 function. Angew. Chem. Int. Ed. Engl.47, 7482–7484 (2008). CASPubMedPubMed Central Google Scholar
Young, D. D., Connelly, C. M., Grohmann, C. & Deiters, A. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J. Am. Chem. Soc.132, 7976–7981 (2010). CASPubMed Google Scholar
Boutla, A., Delidakis, C. & Tabler, M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res.31, 4973–4980 (2003). CASPubMedPubMed Central Google Scholar
Lamond, A. I. & Sproat, B. S. Antisense oligonucleotides made of 2′-_O_-alkylRNA: their properties and applications in RNA biochemistry. FEBS Lett.325, 123–127 (1993). CASPubMed Google Scholar
Verma, S. & Eckstein, F. Modified oligonucleotides: synthesis and strategy for users. Annu. Rev. Biochem.67, 99–134 (1998). CASPubMed Google Scholar
Cummins, L. L. et al. Characterization of fully 2′-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res.23, 2019–2024 (1995). CASPubMedPubMed Central Google Scholar
Majlessi, M., Nelson, N. C. & Becker, M. M. Advantages of 2′-_O_-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res.26, 2224–2229 (1998). CASPubMedPubMed Central Google Scholar
Hutvagner, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence-specific inhibition of small RNA function. PLoS Biol.2, E98 (2004). PubMedPubMed Central Google Scholar
Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA10, 544–550 (2004). CASPubMedPubMed Central Google Scholar
Lennox, K. A. & Behlke, M. A. A direct comparison of anti-microRNA oligonucleotide potency. Pharm. Res.27, 1788–1799 (2010). CASPubMed Google Scholar
Geary, R. S. Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin. Drug Metab. Toxicol.5, 381–391 (2009). CASPubMed Google Scholar
Chiu, Y. L. & Rana, T. M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell10, 549–561 (2002). CASPubMed Google Scholar
Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature432, 173–178 (2004). CASPubMed Google Scholar
Yu, D. et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell150, 895–908 (2012). CASPubMedPubMed Central Google Scholar
Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature456, 980–984 (2008). CASPubMed Google Scholar
Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotech.28, 341–347 (2010). CAS Google Scholar
Manoharan, M. 2′-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim. Biophys. Acta1489, 117–130 (1999). CASPubMed Google Scholar
Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell. Metab.3, 87–98 (2006). CASPubMed Google Scholar
Kawasaki, A. M. et al. Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem.36, 831–841 (1993). CASPubMed Google Scholar
Davis, S., Lollo, B., Freier, S. & Esau, C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res.34, 2294–2304 (2006). CASPubMedPubMed Central Google Scholar
Rigo, F. et al. Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing. Nature Chem. Biol.8, 555–561 (2012). CAS Google Scholar
Petersen, M., Bondensgaard, K., Wengel, J. & Jacobsen, J. P. Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA:RNA hybrids. J. Am. Chem. Soc.124, 5974–5982 (2002). CASPubMed Google Scholar
Singh, K. S., Koshkin, A. A., Wengel, J. & Nielsen, P. LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem. Comm.1998, 455–456 (1998). Google Scholar
Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.65, 6029–6033 (2005). CASPubMed Google Scholar
Orom, U. A., Kauppinen, S. & Lund, A. H. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene372, 137–141 (2006). CASPubMed Google Scholar
Koshkin, A. A. et al. LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA:LNA duplexes. J. Am. Chem. Soc.120, 13252–13253 (1998). CAS Google Scholar
Elmen, J. et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res.36, 1153–1162 (2008). CASPubMed Google Scholar
Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nature Genet.43, 371–378 (2011). CASPubMed Google Scholar
Lennox, K. A., Owczarzy, R., Thomas, D. M., Walder, J. A. & Behlke, M. A. Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol. Ther. Nucleic Acids2, e117 (2013). PubMedPubMed Central Google Scholar
Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotech.25, 1149–1157 (2007). CAS Google Scholar
Nishina, K. et al. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol. Ther.16, 734–740 (2008). CASPubMed Google Scholar
Kortylewski, M. et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nature Biotech.27, 925–932 (2009). CAS Google Scholar
Hsu, T. & Mitragotri, S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl Acad. Sci. USA108, 15816–15821 (2011). CASPubMedPubMed Central Google Scholar
Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotech.23, 1002–1007 (2005). CAS Google Scholar
Morrissey, D. V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology41, 1349–1356 (2005). CASPubMed Google Scholar
Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006). CASPubMed Google Scholar
Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotech.26, 561–569 (2008). CAS Google Scholar
Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther.18, 1357–1364 (2010). CASPubMedPubMed Central Google Scholar
Peer, D., Park, E. J., Morishita, Y., Carman, C. V. & Shimaoka, M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science319, 627–630 (2008). CASPubMedPubMed Central Google Scholar
Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature439, 89–94 (2006). CASPubMed Google Scholar
Kumar, P., Lee, S. K., Shankar, P. & Manjunath, N. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med.3, e96 (2006). PubMedPubMed Central Google Scholar
Malam, Y., Loizidou, M. & Seifalian, A. M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci.30, 592–599 (2009). CASPubMed Google Scholar
Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Rev. Drug Discov.7, 771–782 (2008). CAS Google Scholar
Schiffelers, R. M. et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res.32, e149 (2004). PubMedPubMed Central Google Scholar
Heidel, J. D. et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl Acad. Sci. USA104, 5715–5721 (2007). CASPubMedPubMed Central Google Scholar
Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E. & Triche, T. J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res.65, 8984–8992 (2005). CASPubMed Google Scholar
Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature464, 1067–1070 (2010). CASPubMedPubMed Central Google Scholar
Baigude, H., McCarroll, J., Yang, C. S., Swain, P. M. & Rana, T. M. Design and creation of new nanomaterials for therapeutic RNAi. ACS Chem. Biol.2, 237–241 (2007). CASPubMed Google Scholar
Su, J., Baigude, H., McCarroll, J. & Rana, T. M. Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res.39, e38 (2011). CASPubMedPubMed Central Google Scholar
Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotech.7, 389–393 (2012). CAS Google Scholar
Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotech.23, 709–717 (2005). CAS Google Scholar
Kumar, P. et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell134, 577–586 (2008). CASPubMedPubMed Central Google Scholar
Wen, W. H. et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology46, 84–94 (2007). CASPubMed Google Scholar
Yao, Y. D. et al. Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci. Transl. Med.4, 130ra148 (2012). Google Scholar
Lal, A. et al. miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell35, 610–625 (2009). CASPubMedPubMed Central Google Scholar
Kloosterman, W. P., Lagendijk, A. K., Ketting, R. F., Moulton, J. D. & Plasterk, R. H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol.5, e203 (2007). PubMedPubMed Central Google Scholar
van Deutekom, J. C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med.357, 2677–2686 (2007). CASPubMed Google Scholar
Hammond, S. M. & Wood, M. J. PRO-051, an antisense oligonucleotide for the potential treatment of Duchenne muscular dystrophy. Curr. Opin. Mol. Ther.12, 478–486 (2010). CASPubMed Google Scholar
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol.11, 373–384 (2010). CAS Google Scholar
Kariko, K., Bhuyan, P., Capodici, J. & Weissman, D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol.172, 6545–6549 (2004). CASPubMed Google Scholar
Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature452, 591–597 (2008). CASPubMedPubMed Central Google Scholar
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303, 1529–1531 (2004). CASPubMed Google Scholar
Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science303, 1526–1529 (2004). CASPubMed Google Scholar
Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotech.23, 457–462 (2005). CAS Google Scholar
Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med.11, 263–270 (2005). CASPubMed Google Scholar
Jurk, M. et al. Immunostimulatory potential of silencing RNAs can be mediated by a non-uridine-rich Toll-like receptor 7 motif. Nucleic Acid. Ther.21, 201–214 (2011). CASPubMed Google Scholar
Bennett, C. F. & Swayze, E. E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol.50, 259–293 (2010). CASPubMed Google Scholar
Henry, S. P., Novotny, W., Leeds, J., Auletta, C. & Kornbrust, D. J. Inhibition of coagulation by a phosphorothioate oligonucleotide. Antisense Nucleic Acid Drug Dev.7, 503–510 (1997). CASPubMed Google Scholar
Galbraith, W. M., Hobson, W. C., Giclas, P. C., Schechter, P. J. & Agrawal, S. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res. Dev.4, 201–206 (1994). CASPubMed Google Scholar
Hildebrandt-Eriksen, E. S. et al. A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Ther.22, 152–161 (2012). CASPubMed Google Scholar
Swayze, E. E. et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res.35, 687–700 (2007). CASPubMed Google Scholar
Stanton, R. et al. Chemical modification study of antisense gapmers. Nucleic Acid. Ther.22, 344–359 (2012). CASPubMed Google Scholar
Kakiuchi-Kiyota, S. et al. Comparison of hepatic transcription profiles of locked ribonucleic acid (LNA) antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice. Toxicol. Sci.138, 234–248 (2013). PubMed Google Scholar
Garzon, R., Marcucci, G. & Croce, C. M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Rev. Drug Discov.9, 775–789 (2010). CAS Google Scholar
Matsubara, H. et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene26, 6099–6105 (2007). CASPubMed Google Scholar
Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell132, 875–886 (2008). CASPubMedPubMed Central Google Scholar
Kang, S. G. et al. MicroRNAs of the miR-17 approximately 92 family are critical regulators of TFH differentiation. Nature Immunol.14, 849–857 (2013). CAS Google Scholar
Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev.64, S206–S212 (2012). Google Scholar
Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev.64, S24–S36 (2012). Google Scholar
Jain, R. K. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug. Deliv. Rev.64, S353–S365 (2012). Google Scholar
Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature Biotech.31, 638–646 (2013). CAS Google Scholar
Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science309, 1577–1581 (2005). CASPubMed Google Scholar
Iorio, M. V. & Croce, C. M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med.4, 143–159 (2012). CASPubMedPubMed Central Google Scholar
Bouchie, A. First microRNA mimic enters clinic. Nature Biotech.31, 577–577 (2013). CAS Google Scholar
Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000). CASPubMed Google Scholar
Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.64, 3753–3756 (2004). CASPubMed Google Scholar
Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell120, 635–647 (2005). CASPubMed Google Scholar
Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science315, 1576–1579 (2007). CASPubMedPubMed Central Google Scholar
Kumar, M. S. et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl Acad. Sci. USA105, 3903–3908 (2008). CASPubMedPubMed Central Google Scholar
Esquela-Kerscher, A. et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle7, 759–764 (2008). CASPubMed Google Scholar
Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell131, 1109–1123 (2007). CASPubMed Google Scholar
Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103, 2257–2261 (2006). CASPubMedPubMed Central Google Scholar
Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nature Rev. Genet.10, 704–714 (2009). CASPubMed Google Scholar
Meng, F. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology133, 647–658 (2007). CASPubMed Google Scholar
Zhu, S., Si, M. L., Wu, H. & Mo, Y. Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem.282, 14328–14336 (2007). CASPubMed Google Scholar
Asangani, I. A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene27, 2128–2136 (2008). CASPubMed Google Scholar
Frankel, L. B. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem.283, 1026–1033 (2008). CASPubMed Google Scholar
Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med.4, 121ra118 (2012). Google Scholar
van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science316, 575–579 (2007). CASPubMed Google Scholar
Montgomery, R. L. et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation124, 1537–1547 (2011). CASPubMedPubMed Central Google Scholar
Porrello, E. R. et al. miR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res.109, 670–679 (2011). CASPubMedPubMed Central Google Scholar
Hullinger, T. G. et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res.110, 71–81 (2012). CASPubMed Google Scholar
Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA110, 187–192 (2013). CASPubMed Google Scholar
Fornari, F. et al. miR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene27, 5651–5661 (2008). CASPubMed Google Scholar
Gramantieri, L. et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin. Cancer Res.15, 5073–5081 (2009). CASPubMedPubMed Central Google Scholar
Pineau, P. et al. miR-221 overexpression contributes to liver tumorigenesis. Proc. Natl Acad. Sci. USA107, 264–269 (2010). CASPubMed Google Scholar
Park, J. K. et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res.71, 7608–7616 (2011). CASPubMedPubMed Central Google Scholar
Trajkovski, M. et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature474, 649–653 (2011). CASPubMed Google Scholar
Khraiwesh, B. et al. Transcriptional control of gene expression by microRNAs. Cell140, 111–122 (2010). CASPubMed Google Scholar
Eiring, A. M. et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell140, 652–665 (2010). CASPubMedPubMed Central Google Scholar
Braconi, C. et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene30, 4750–4756 (2011). CASPubMedPubMed Central Google Scholar
Taulli, R., Loretelli, C. & Pandolfi, P. P. From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nature Struct. Mol. Biol.20, 541–543 (2013). CAS Google Scholar
Zisoulis, D. G., Kai, Z. S., Chang, R. K. & Pasquinelli, A. E. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature486, 541–544 (2012). CASPubMedPubMed Central Google Scholar
Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell149, 1635–1646 (2012). CASPubMedPubMed Central Google Scholar
Tang, X., Li, M., Tucker, L. & Ramratnam, B. Glycogen synthase kinase 3 beta (GSK3β) phosphorylates the RNAase III enzyme Drosha at S300 and S302. PLoS ONE6, e20391 (2011). CASPubMedPubMed Central Google Scholar
Wu, C. et al. Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modification of Argonaute2. Mol. Cell. Biol.31, 4760–4774 (2011). CASPubMedPubMed Central Google Scholar
Zeng, Y., Sankala, H., Zhang, X. & Graves, P. R. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem. J.413, 429–436 (2008). CASPubMed Google Scholar
Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell32, 276–284 (2008). CASPubMed Google Scholar