Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders (original) (raw)
Berdasco, M. & Esteller, M. Genetic syndromes caused by mutations in epigenetic genes. Hum. Genet.132, 359–383 (2013). CASPubMed Google Scholar
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer11, 726–734 (2011). CAS Google Scholar
Berger, S. L. The complex language of chromatin regulation during transcription. Nature447, 407–412 (2007). CASPubMed Google Scholar
Kouzarides, T. Chromatin modifications and their function. Cell128, 693–705 (2007). CASPubMed Google Scholar
Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell150, 12–27 (2012). CASPubMed Google Scholar
Dawson, M. A., Kouzarides, T. & Huntly, B. J. Targeting epigenetic readers in cancer. N. Engl. J. Med.367, 647–657 (2012). References 5 and 6 are excellent review articles providing a contemporary view of the links between cancer genetics and epigenetics. CASPubMed Google Scholar
Kaminskas, E. et al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin. Cancer Res.11, 3604–3608 (2005). CASPubMed Google Scholar
Kaminskas, E., Farrell, A. T., Wang, Y. C., Sridhara, R. & Pazdur, R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist10, 176–182 (2005). CASPubMed Google Scholar
Yu, W. et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nature Commun.3, 1288 (2012). Google Scholar
McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature492, 108–112 (2012). CASPubMed Google Scholar
Knutson, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nature Chem. Biol.8, 890–896 (2012). CAS Google Scholar
Bonham, K. et al. Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production. FEBS J.277, 2096–2108 (2010). CASPubMedPubMed Central Google Scholar
Kleinschmidt, M. A., de Graaf, P., van Teeffelen, H. A. & Timmers, H. T. Cell cycle regulation by the PRMT6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors. PLoS ONE7, e41446 (2012). CASPubMedPubMed Central Google Scholar
West, A. C. & Johnstone, R. W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest.124, 30–39 (2014). CASPubMedPubMed Central Google Scholar
Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-_trans_-retinoic acid differentiation pathway in acute myeloid leukemia. Nature Med.18, 605–611 (2012). CASPubMed Google Scholar
Willmann, D. et al. Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int. J. Cancer131, 2704–2709 (2012). CASPubMed Google Scholar
Shi, L., Cui, S., Engel, J. D. & Tanabe, O. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nature Med.19, 291–294 (2013). CASPubMed Google Scholar
Frieling, H. & Bleich, S. Tranylcypromine: new perspectives on an “old” drug. Eur. Arch. Psychiatry Clin. Neurosci.256, 268–273 (2006). PubMed Google Scholar
Tedeschini, E. et al. Efficacy of antidepressants for late-life depression: a meta-analysis and meta-regression of placebo-controlled randomized trials. J. Clin. Psychiatry72, 1660–1668 (2011). CASPubMed Google Scholar
Mertz, J. A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA108, 16669–16674 (2011). CASPubMedPubMed Central Google Scholar
Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature478, 529–533 (2011). CASPubMedPubMed Central Google Scholar
Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature478, 524–528 (2011). CASPubMedPubMed Central Google Scholar
Bandukwala, H. S. et al. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc. Natl Acad. Sci. USA109, 14532–14537 (2012). CASPubMedPubMed Central Google Scholar
Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science325, 834–840 (2009). This is an important demonstration of non-histone substrates of HDACs and the biological effects of protein acetylation. CASPubMed Google Scholar
Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet.33, S245–S454 (2003). References 23–29 demonstrate the antitumour activities of novel bromodomain inhibitors. Google Scholar
Dudakovic, A. et al. Histone deacetylase inhibition promotes osteoblast maturation by altering the histone H4 epigenome and reduces Akt phosphorylation. J. Biol. Chem.288, 28783–28791 (2013). CASPubMedPubMed Central Google Scholar
Peart, M. J. et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA102, 3697–3702 (2005). CASPubMedPubMed Central Google Scholar
Gray, S. G., Qian, C. N., Furge, K., Guo, X. & Teh, B. T. Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int. J. Oncol.24, 773–795 (2004). CASPubMed Google Scholar
Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotech.29, 255–265 (2011). This is a demonstration of the functional role of HDACs in multiprotein complexes and the use of chromoproteomics to demonstrate the specificity of HDAC inhibitors in physiological circumstances. CAS Google Scholar
Delcuve, G. P., Khan, D. H. & Davie, J. R. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin. Epigenet.4, 5 (2012). CAS Google Scholar
Leder, A. & Leder, P. Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell5, 319–322 (1975). CASPubMed Google Scholar
Riggs, M. G., Whittaker, R. G., Neumann, J. R. & Ingram, V. M. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature268, 462–464 (1977). CASPubMed Google Scholar
Licht, J. D. AML1 and the AML1–ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene20, 5660–5679 (2001). CASPubMed Google Scholar
Liu, Y. et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell9, 249–260 (2006). PubMed Google Scholar
Peterson, L. F. & Zhang, D. E. The 8;21 translocation in leukemogenesis. Oncogene23, 4255–4262 (2004). CASPubMed Google Scholar
Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer6, 38–51 (2006). CAS Google Scholar
Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science295, 1079–1082 (2002). CASPubMed Google Scholar
Rego, E. M. et al. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARα and PLZF-RARα oncoproteins. Proc. Natl Acad. Sci. USA97, 10173–10178 (2000). CASPubMedPubMed Central Google Scholar
Licht, J. D. et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood85, 1083–1094 (1995). CASPubMed Google Scholar
Halkidou, K. et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate59, 177–189 (2004). CASPubMed Google Scholar
Zimmermann, S. et al. Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res.67, 9047–9054 (2007). CASPubMed Google Scholar
Bhaskara, S. et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell18, 436–447 (2010). This study indicates a tumour-suppressive role for HDAC3. CASPubMedPubMed Central Google Scholar
Dovey, O. M. et al. Histone deacetylase 1 and 2 are essential for normal T-cell development and genomic stability in mice. Blood121, 1335–1344 (2013). CASPubMed Google Scholar
Heideman, M. R. et al. Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood121, 2038–2050 (2013). CASPubMedPubMed Central Google Scholar
Santoro, F. et al. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood121, 3459–3468 (2013). References 48–50 provide experimental evidence supporting the tumour-suppressive functions of HDAC1 and HDAC2. CASPubMed Google Scholar
Graff, J. et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature483, 222–226 (2012). PubMedPubMed Central Google Scholar
Montgomery, R. L., Hsieh, J., Barbosa, A. C., Richardson, J. A. & Olson, E. N. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc. Natl Acad. Sci. USA106, 7876–7881 (2009). CASPubMedPubMed Central Google Scholar
Akhtar, M. W. et al. Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J. Neurosci.29, 8288–8297 (2009). CASPubMedPubMed Central Google Scholar
Majdzadeh, N., Morrison, B. E. & D'Mello, S. R. Class IIA HDACs in the regulation of neurodegeneration. Front. Biosci.13, 1072–1082 (2008). CASPubMedPubMed Central Google Scholar
Majdzadeh, N. et al. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev. Neurobiol.68, 1076–1092 (2008). CASPubMedPubMed Central Google Scholar
Kim, M. S. et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J. Neurosci.32, 10879–10886 (2012). CASPubMedPubMed Central Google Scholar
Williams, S. R. et al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am. J. Hum. Genet.87, 219–228 (2010). CASPubMedPubMed Central Google Scholar
Fukada, M. et al. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice. PLoS ONE7, e30924 (2012). CASPubMedPubMed Central Google Scholar
Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci.24, 1121–1159 (2001). CASPubMed Google Scholar
Min, S. W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron67, 953–966 (2010). CASPubMedPubMed Central Google Scholar
Cohen, T. J. et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nature Commun.2, 252 (2011). Google Scholar
Irwin, D. J. et al. Acetylated tau neuropathology in sporadic and hereditary tauopathies. Am. J. Pathol.183, 344–351 (2013). CASPubMedPubMed Central Google Scholar
Selenica, M. L. et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition. Alzheimers Res. Ther.6, 12 (2014). PubMedPubMed Central Google Scholar
Cook, C. et al. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum. Mol. Genet.23, 104–116 (2014). CASPubMed Google Scholar
Simoes-Pires, C. et al. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener.8, 7 (2013). CASPubMedPubMed Central Google Scholar
Jeong, H. et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell137, 60–72 (2009). This is a landmark demonstration of the role of acetylated HTT in Huntington's disease. CASPubMedPubMed Central Google Scholar
Govindarajan, N. et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol. Med.5, 52–63 (2013). CASPubMed Google Scholar
Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci.27, 3571–3583 (2007). CASPubMedPubMed Central Google Scholar
Bobrowska, A., Paganetti, P., Matthias, P. & Bates, G. P. Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease. PLoS ONE6, e20696 (2011). CASPubMedPubMed Central Google Scholar
Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature447, 859–863 (2007). CASPubMed Google Scholar
Brady, R. O., Kanfer, J. N., Bradley, R. M. & Shapiro, D. Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher's disease. J. Clin. Invest.45, 1112–1115 (1966). CASPubMedPubMed Central Google Scholar
Lu, J. et al. Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease. Proc. Natl Acad. Sci. USA108, 21200–21205 (2011). CASPubMedPubMed Central Google Scholar
Kovacs, J. J. et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell18, 601–607 (2005). CASPubMed Google Scholar
Shakespear, M. R., Halili, M. A., Irvine, K. M., Fairlie, D. P. & Sweet, M. J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol.32, 335–343 (2011). CASPubMed Google Scholar
Hancock, W. W., Akimova, T., Beier, U. H., Liu, Y. & Wang, L. HDAC inhibitor therapy in autoimmunity and transplantation. Ann. Rheum. Dis.71 (Suppl. 2), 46–54 (2012). Google Scholar
Sweet, M. J., Shakespear, M. R., Kamal, N. A. & Fairlie, D. P. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation. Immunol. Cell Biol.90, 14–22 (2012). CASPubMed Google Scholar
Xu, M., Nie, L., Kim, S. H. & Sun, X. H. STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBPβ. EMBO J.22, 893–904 (2003). CASPubMedPubMed Central Google Scholar
Kramer, O. H. et al. A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev.23, 223–235 (2009). PubMedPubMed Central Google Scholar
Klampfer, L., Huang, J., Swaby, L. A. & Augenlicht, L. Requirement of histone deacetylase activity for signaling by STAT1. J. Biol. Chem.279, 30358–30368 (2004). CASPubMed Google Scholar
Chang, H. M. et al. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc. Natl Acad. Sci. USA101, 9578–9583 (2004). CASPubMedPubMed Central Google Scholar
Nusinzon, I. & Horvath, C. M. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc. Natl Acad. Sci. USA100, 14742–14747 (2003). CASPubMedPubMed Central Google Scholar
Lobera, M. et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nature Chem. Biol.9, 319–325 (2013). CAS Google Scholar
Shakespear, M. R. et al. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J. Biol. Chem.288, 25362–25374 (2013). CASPubMedPubMed Central Google Scholar
Barneda-Zahonero, B. et al. HDAC7 is a repressor of myeloid genes whose downregulation is required for transdifferentiation of pre-B cells into macrophages. PLoS Genet.9, e1003503 (2013). CASPubMedPubMed Central Google Scholar
Navarro, M. N., Goebel, J., Feijoo-Carnero, C., Morrice, N. & Cantrell, D. A. Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nature Immunol.12, 352–361 (2011). CAS Google Scholar
de Zoeten, E. F., Wang, L., Sai, H., Dillmann, W. H. & Hancock, W. W. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology138, 583–594 (2010). CASPubMed Google Scholar
Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Med.13, 1299–1307 (2007). This is an important study demonstrating the role of HDACs in regulating immune responses. CASPubMed Google Scholar
de Zoeten, E. F. et al. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ T-regulatory cells. Mol. Cell. Biol.31, 2066–2078 (2011). CASPubMedPubMed Central Google Scholar
Serrador, J. M. et al. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity20, 417–428 (2004). CASPubMed Google Scholar
Cabrero, J. R. et al. Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Mol. Biol. Cell17, 3435–3445 (2006). CASPubMedPubMed Central Google Scholar
Yamaguchi, T. et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev.24, 455–469 (2010). CASPubMedPubMed Central Google Scholar
Grausenburger, R. et al. Conditional deletion of histone deacetylase 1 in T cells leads to enhanced airway inflammation and increased Th2 cytokine production. J. Immunol.185, 3489–3497 (2010). CASPubMed Google Scholar
Villagra, A. et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nature Immunol.10, 92–100 (2009). CAS Google Scholar
Bullen, C. K., Laird, G. M., Durand, C. M., Siliciano, J. D. & Siliciano, R. F. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nature Med.20, 425–429 (2014). CASPubMed Google Scholar
Zhou, G., Du, T. & Roizman, B. The role of the CoREST/REST repressor complex in herpes simplex virus 1 productive infection and in latency. Viruses5, 1208–1218 (2013). CASPubMedPubMed Central Google Scholar
Johnstone, R. W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nature Rev. Drug Discov.1, 287–299 (2002). CAS Google Scholar
Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell9, 45–57 (2002). CASPubMed Google Scholar
Backs, J., Backs, T., Bezprozvannaya, S., McKinsey, T. A. & Olson, E. N. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol. Cell. Biol.28, 3437–3445 (2008). CASPubMedPubMed Central Google Scholar
Kong, H. S. et al. Preclinical studies of YK-4-272, an inhibitor of class II histone deacetylases by disruption of nucleocytoplasmic shuttling. Pharm. Res.29, 3373–3383 (2012). CASPubMedPubMed Central Google Scholar
Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA104, 17335–17340 (2007). CASPubMedPubMed Central Google Scholar
Herman, D. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nature Chem. Biol.2, 551–558 (2006). CAS Google Scholar
Rai, M. et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE3, e1958 (2008). PubMedPubMed Central Google Scholar
Sandi, C. et al. Prolonged treatment with pimelic _O_-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol. Dis.42, 496–505 (2011). CASPubMedPubMed Central Google Scholar
Soragni, E. et al. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia. J. Child Neurol.27, 1164–1173 (2012). PubMedPubMed Central Google Scholar
Wells, C. E. et al. Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma. PLoS ONE8, e68915 (2013). CASPubMedPubMed Central Google Scholar
Minami, J. et al. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia28, 680–689 (2013). PubMedPubMed Central Google Scholar
Santo, L. et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood119, 2579–2589 (2012). CASPubMedPubMed Central Google Scholar
McConkey, D. J., White, M. & Yan, W. HDAC inhibitor modulation of proteotoxicity as a therapeutic approach in cancer. Adv. Cancer Res.116, 131–163 (2012). CASPubMed Google Scholar
Newbold, A. et al. Molecular and biological analysis of histone deacetylase inhibitors with diverse specificities. Mol. Cancer Ther.12, 2709–2721 (2013). CASPubMed Google Scholar
Schroeder, F. A. et al. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE8, e71323 (2013). CASPubMedPubMed Central Google Scholar
Ai, T., Cui, H. & Chen, L. Multi-targeted histone deacetylase inhibitors in cancer therapy. Curr. Med. Chem.19, 475–487 (2012). CASPubMed Google Scholar
Qian, C. et al. Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin. Cancer Res.18, 4104–4113 (2012). CASPubMed Google Scholar
Lai, C. J. et al. CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res.70, 3647–3656 (2010). CASPubMed Google Scholar
Wang, J. et al. Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion. Mol. Cancer Ther.12, 925–936 (2013). CASPubMed Google Scholar
Needham, L. A. et al. Drug targeting to monocytes and macrophages using esterase-sensitive chemical motifs. J. Pharmacol. Exp. Ther.339, 132–142 (2011). CASPubMed Google Scholar
Ossenkoppele, G. J. et al. A phase I first-in-human study with tefinostat - a monocyte/macrophage targeted histone deacetylase inhibitor - in patients with advanced haematological malignancies. Br. J. Haematol.162, 191–201 (2013). CASPubMed Google Scholar
Guerrant, W., Patil, V., Canzoneri, J. C. & Oyelere, A. K. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J. Med. Chem.55, 1465–1477 (2012). CASPubMedPubMed Central Google Scholar
Guerrant, W. et al. Dual-acting histone deacetylase-topoisomerase I inhibitors. Bioorg. Med. Chem. Lett.23, 3283–3287 (2013). CASPubMedPubMed Central Google Scholar
Chen, G. L. et al. Discovery of a small molecular compound simultaneously targeting RXR and HADC: design, synthesis, molecular docking and bioassay. Bioorg. Med. Chem. Lett.23, 3891–3895 (2013). CASPubMed Google Scholar
Gryder, B. E. et al. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J. Med. Chem.56, 5782–5796 (2013). CASPubMed Google Scholar
Chen, J. B. et al. Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment. J. Med. Chem.56, 3645–3655 (2013). CASPubMed Google Scholar
Tavera-Mendoza, L. E. et al. Incorporation of histone deacetylase inhibition into the structure of a nuclear receptor agonist. Proc. Natl Acad. Sci. USA105, 8250–8255 (2008). CASPubMedPubMed Central Google Scholar
Lamblin, M. et al. Vitamin D receptor agonist/histone deacetylase inhibitor molecular hybrids. Bioorg. Med. Chem.18, 4119–4137 (2010). CASPubMed Google Scholar
Ko, K. S., Steffey, M. E., Brandvold, K. R. & Soellner, M. B. Development of a chimeric c-Src kinase and HDAC inhibitor. ACS Med. Chem. Lett.4, 779–783 (2013). CASPubMedPubMed Central Google Scholar
Patel, H. K. et al. A chimeric SERM-histone deacetylase inhibitor approach to breast cancer therapy. ChemMedChem9, 602–613 (2013). PubMedPubMed Central Google Scholar
Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science297, 63–64 (2002). CASPubMed Google Scholar
Bolden, J. E. et al. HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis.4, e519 (2013). CASPubMedPubMed Central Google Scholar
Insinga, A. et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature Med.11, 71–76 (2005). CASPubMed Google Scholar
Nebbioso, A. et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nature Med.11, 77–84 (2005). References 130 and 131 demonstrate a role for the death receptor pathway in mediating apoptosis induced by HDAC inhibitors. CASPubMed Google Scholar
Ungerstedt, J. S. et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA102, 673–678 (2005). CASPubMedPubMed Central Google Scholar
Fuino, L. et al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol. Cancer Ther.2, 971–984 (2003). CASPubMed Google Scholar
Bali, P. et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem.280, 26729–26734 (2005). CASPubMed Google Scholar
Nimmanapalli, R. et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res.63, 5126–5135 (2003). CASPubMed Google Scholar
Yu, W. et al. Heat shock protein 90 inhibition results in altered downstream signaling of mutant KIT and exerts synergistic effects on Kasumi-1 cells when combining with histone deacetylase inhibitor. Leuk. Res.35, 1212–1218 (2011). CASPubMed Google Scholar
Wang, Y. et al. FK228 inhibits Hsp90 chaperone function in K562 cells via hyperacetylation of Hsp70. Biochem. Biophys. Res. Commun.356, 998–1003 (2007). CASPubMed Google Scholar
Nguyen, T. et al. HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin. Cancer Res.17, 3219–3232 (2011). CASPubMedPubMed Central Google Scholar
Jaboin, J. et al. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res.62, 6108–6115 (2002). CASPubMed Google Scholar
Stumpel, D. J. et al. Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia. Leukemia26, 682–692 (2012). CASPubMed Google Scholar
Marshall, G. M. et al. Transcriptional upregulation of histone deacetylase 2 promotes Myc-induced oncogenic effects. Oncogene29, 5957–5968 (2010). CASPubMed Google Scholar
Zhang, X. et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-cell lymphomas. Cancer Cell22, 506–523 (2012). CASPubMedPubMed Central Google Scholar
Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nature Rev. Drug Discov.5, 769–784 (2006). CAS Google Scholar
Ellis, L. et al. The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood114, 380–393 (2009). CASPubMedPubMed Central Google Scholar
Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol.31, 51–72 (2013). CASPubMed Google Scholar
Setiadi, A. F. et al. Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res.68, 9601–9607 (2008). CASPubMed Google Scholar
Christiansen, A. J. et al. Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc. Natl Acad. Sci. USA108, 4141–4146 (2011). CASPubMedPubMed Central Google Scholar
West, A. C. et al. An intact immune system is required for the anti-cancer activities of histone deacetylase inhibitors. Cancer Res.73, 7265–7276 (2013). CASPubMed Google Scholar
Schwartz, B. E. et al. Differentiation of NUT midline carcinoma by epigenomic reprogramming. Cancer Res.71, 2686–2696 (2011). CASPubMedPubMed Central Google Scholar
Bots, M. et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood123, 1341–1352 (2014). CASPubMedPubMed Central Google Scholar
Duvic, M. et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood109, 31–39 (2007). CASPubMedPubMed Central Google Scholar
VanderMolen, K. M., McCulloch, W., Pearce, C. J. & Oberlies, N. H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot.64, 525–531 (2011). CAS Google Scholar
New, M., Olzscha, H. & La Thangue, N. B. HDAC inhibitor-based therapies: can we interpret the code? Mol. Oncol.6, 637–656 (2012). CASPubMedPubMed Central Google Scholar
Nebbioso, A., Carafa, V., Benedetti, R. & Altucci, L. Trials with 'epigenetic' drugs: an update. Mol. Oncol.6, 657–682 (2012). CASPubMedPubMed Central Google Scholar
Qiu, T. et al. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol.9, 255–269 (2013). CASPubMed Google Scholar
Garcia-Manero, G. et al. Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J. Clin. Oncol.30, 2204–2210 (2012). CASPubMedPubMed Central Google Scholar
Bots, M. & Johnstone, R. W. Rational combinations using HDAC inhibitors. Clin. Cancer Res.15, 3970–3977 (2009). CASPubMed Google Scholar
Thurn, K. T., Thomas, S., Moore, A. & Munster, P. N. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol.7, 263–283 (2011). CASPubMed Google Scholar
Blum, W. et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J. Clin. Oncol.25, 3884–3891 (2007). CASPubMed Google Scholar
Badros, A. et al. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin. Cancer Res.15, 5250–5257 (2009). CASPubMedPubMed Central Google Scholar
Weber, D. M. et al. Phase I trial of vorinostat combined with bortezomib for the treatment of relapsing and/or refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk.12, 319–324 (2012). CASPubMed Google Scholar
Millward, M. et al. Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Invest. New Drugs30, 2303–2317 (2012). CASPubMed Google Scholar
Dasmahapatra, G. et al. The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo. Blood115, 4478–4487 (2010). CASPubMedPubMed Central Google Scholar
Dasmahapatra, G. et al. Carfilzomib interacts synergistically with histone deacetylase inhibitors in mantle cell lymphoma cells in vitro and in vivo. Mol. Cancer Ther.10, 1686–1697 (2011). CASPubMedPubMed Central Google Scholar
Munster, P. N. et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer104, 1828–1835 (2011). CASPubMedPubMed Central Google Scholar
Faller, D. V., Mentzer, S. J. & Perrine, S. P. Induction of the Epstein-Barr virus thymidine kinase gene with concomitant nucleoside antivirals as a therapeutic strategy for Epstein-Barr virus-associated malignancies. Curr. Opin. Oncol.13, 360–367 (2001). CASPubMed Google Scholar
Perrine, S. P. et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood109, 2571–2578 (2007). CASPubMedPubMed Central Google Scholar
Ghosh, S. K., Perrine, S. P., Williams, R. M. & Faller, D. V. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood119, 1008–1017 (2012). CASPubMedPubMed Central Google Scholar
Johnstone, R. W., Frew, A. J. & Smyth, M. J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nature Rev. Cancer8, 782–798 (2008). CAS Google Scholar
Frew, A. J. et al. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc. Natl Acad. Sci. USA105, 11317–11322 (2008). CASPubMedPubMed Central Google Scholar
Martin, B. P. et al. Antitumor activities and on-target toxicities mediated by a TRAIL receptor agonist following cotreatment with panobinostat. Int. J. Cancer128, 2735–2747 (2011). CASPubMed Google Scholar
Whitecross, K. F. et al. Defining the target specificity of ABT-737 and synergistic antitumor activities in combination with histone deacetylase inhibitors. Blood113, 1982–1991 (2009). CASPubMed Google Scholar
Chuang, D. M., Leng, Y., Marinova, Z., Kim, H. J. & Chiu, C. T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci.32, 591–601 (2009). CASPubMedPubMed Central Google Scholar
Jia, H. et al. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease. Neurobiol. Dis.46, 351–361 (2012). CASPubMedPubMed Central Google Scholar
Steffan, J. S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature413, 739–743 (2001). CASPubMed Google Scholar
Kozikowski, A. P. et al. Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J. Med. Chem.50, 3054–3061 (2007). CASPubMed Google Scholar
Butler, K. V. et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc.132, 10842–10846 (2010). CASPubMedPubMed Central Google Scholar
Zhang, L. et al. Tubastatin A/ACY-1215 improves cognition in alzheimer's disease transgenic mice. J. Alzheimers Dis.http://dx.doi.org/10.3233/JAD-140066 (2014).
Zhang, L., Sheng, S. & Qin, C. The role of HDAC6 in Alzheimer's disease. J. Alzheimers Dis.33, 283–295 (2013). PubMed Google Scholar
Subramanian, S., Bates, S., Wright, J., Espinoza-Delgado, I. & Piekarz, R. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals3, 2751–2767 (2010). CASPubMedPubMed Central Google Scholar
Seo, J., Howell, M. D., Singh, N. N. & Singh, R. N. Spinal muscular atrophy: an update on therapeutic progress. Biochim. Biophys. Acta1832, 2180–2190 (2013). CASPubMed Google Scholar
Harahap, I. S. et al. Valproic acid increases SMN2 expression and modulates SF2/ASF and hnRNPA1 expression in SMA fibroblast cell lines. Brain Dev.34, 213–222 (2012). PubMed Google Scholar
Evans, M. C., Cherry, J. J. & Androphy, E. J. Differential regulation of the SMN2 gene by individual HDAC proteins. Biochem. Biophys. Res. Commun.414, 25–30 (2011). CASPubMedPubMed Central Google Scholar
Kwon, D. Y., Motley, W. W., Fischbeck, K. H. & Burnett, B. G. Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice. Hum. Mol. Genet.20, 3667–3677 (2011). CASPubMedPubMed Central Google Scholar
Akimova, T., Beier, U. H., Liu, Y., Wang, L. & Hancock, W. W. Histone/protein deacetylases and T-cell immune responses. Blood119, 2443–2451 (2012). CASPubMedPubMed Central Google Scholar
Halili, M. A., Andrews, M. R., Sweet, M. J. & Fairlie, D. P. Histone deacetylase inhibitors in inflammatory disease. Curr. Top. Med. Chem.9, 309–319 (2009). CASPubMed Google Scholar
Hsieh, I. N. et al. Preclinical anti-arthritic study and pharmacokinetic properties of a potent histone deacetylase inhibitor MPT0G009. Cell Death Dis.5, e1166 (2014). CASPubMedPubMed Central Google Scholar
Joosten, L. A., Leoni, F., Meghji, S. & Mascagni, P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol. Med.17, 391–396 (2011). CASPubMedPubMed Central Google Scholar
Archin, N. M. et al. Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors. AIDS23, 1799–1806 (2009). CASPubMed Google Scholar
Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature487, 482–485 (2012). This is an important demonstration that HDAC inhibitors can affect viral latency. CASPubMedPubMed Central Google Scholar
Ritchie, D. et al. Reactivation of DNA viruses in association with histone deacetylase inhibitor therapy: a case series report. Haematologica94, 1618–1622 (2009). CASPubMedPubMed Central Google Scholar
Scala, S. et al. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol. Pharmacol.51, 1024–1033 (1997). CASPubMed Google Scholar
Xiao, J. J. et al. Efflux of depsipeptide FK228 (FR901228, NSC-630176) is mediated by P-glycoprotein and multidrug resistance-associated protein 1. J. Pharmacol. Exp. Ther.313, 268–276 (2005). CASPubMed Google Scholar
Ruefli, A. A. et al. Suberoylanilide hydroxamic acid (SAHA) overcomes multidrug resistance and induces cell death in P-glycoprotein-expressing cells. Int. J. Cancer99, 292–298 (2002). CASPubMed Google Scholar
Lindemann, R. K. et al. Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proc. Natl Acad. Sci. USA104, 8071–8076 (2007). CASPubMedPubMed Central Google Scholar
Newbold, A. et al. Characterisation of the novel apoptotic and therapeutic activities of the histone deacetylase inhibitor romidepsin. Mol. Cancer Ther.7, 1066–1079 (2008). CASPubMed Google Scholar
Fantin, V. R. et al. Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res.68, 3785–3794 (2008). CASPubMed Google Scholar
Fotheringham, S. et al. Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell15, 57–66 (2009). References 198 and 199 provide the first evidence for predictive biomarkers of tumour cell sensitivity to HDAC inhibitors. CASPubMed Google Scholar
Khan, O. et al. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc. Natl Acad. Sci. USA107, 6532–6537 (2010). CASPubMedPubMed Central Google Scholar
Yeo, W. et al. Epigenetic therapy using belinostat for patients with unresectable hepatocellular carcinoma: a multicenter phase I/II study with biomarker and pharmacokinetic analysis of tumors from patients in the Mayo Phase II Consortium and the Cancer Therapeutics Research Group. J. Clin. Oncol.30, 3361–3367 (2012). CASPubMedPubMed Central Google Scholar
Chen, L., Shinde, U., Ortolan, T. G. & Madura, K. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep.2, 933–938 (2001). CASPubMedPubMed Central Google Scholar
Chen, L. & Madura, K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol.22, 4902–4913 (2002). CASPubMedPubMed Central Google Scholar
New, M. et al. A regulatory circuit that involves HR23B and HDAC6 governs the biological response to HDAC inhibitors. Cell Death Differ.20, 1306–1316 (2013). CASPubMedPubMed Central Google Scholar
Xu, W., Ngo, L., Perez, G., Dokmanovic, M. & Marks, P. A. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc. Natl Acad. Sci. USA103, 15540–15545 (2006). CASPubMedPubMed Central Google Scholar
Garcia-Manero, G. et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood111, 1060–1066 (2008). CASPubMed Google Scholar
Hu, Y. et al. Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate. Blood116, 2732–2741 (2010). CASPubMedPubMed Central Google Scholar
Hug, B. A. & Lazar, M. A. ETO interacting proteins. Oncogene23, 4270–4274 (2004). CASPubMed Google Scholar
Liu, S. et al. Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res.65, 1277–1284 (2005). CASPubMed Google Scholar
Shia, W. J. et al. PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood119, 4953–4962 (2012). CASPubMedPubMed Central Google Scholar
Rice, K. L. & de The, H. The acute promyelotic leukemia (APL) success story: curing leukemia through targeted therapies. J. Intern. Med.276, 61–70 (2014). CASPubMed Google Scholar
Villa, R. et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell11, 513–525 (2007). CASPubMed Google Scholar
Gupta, P., Reid, R. C., Iyer, A., Sweet, M. J. & Fairlie, D. P. Towards isozyme-selective HDAC inhibitors for interrogating disease. Curr. Top. Med. Chem.12, 1479–1499 (2012). CASPubMed Google Scholar
Salisbury, C. M. & Cravatt, B. F. Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl Acad. Sci. USA104, 1171–1176 (2007). CASPubMedPubMed Central Google Scholar
Tessier, P. et al. Diphenylmethylene hydroxamic acids as selective class IIa histone deacetylase inhibitors. Bioorg. Med. Chem. Lett.19, 5684–5688 (2009). CASPubMed Google Scholar
Malvaez, M. et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc. Natl Acad. Sci. USA110, 2647–2652 (2013). CASPubMedPubMed Central Google Scholar
Jochems, J. et al. Antidepressant-like properties of novel HDAC6 Selective inhibitors with improved brain bioavailability. Neuropsychopharmacology39, 389–400 (2013). PubMedPubMed Central Google Scholar
Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M. & Schreiber, S. L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA100, 4389–4394 (2003). CASPubMedPubMed Central Google Scholar
Namdar, M., Perez, G., Ngo, L. & Marks, P. A. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl Acad. Sci. USA107, 20003–20008 (2010). CASPubMedPubMed Central Google Scholar
Vishwakarma, S. et al. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects. Int. Immunopharmacol.16, 72–78 (2013). CASPubMed Google Scholar
Kaliszczak, M. et al. A novel small molecule hydroxamate preferentially inhibits HDAC6 activity and tumour growth. Br. J. Cancer108, 342–350 (2013). CASPubMedPubMed Central Google Scholar
Lee, J. H. et al. Development of a histone deacetylase 6 inhibitor and its biological effects. Proc. Natl Acad. Sci. USA110, 15704–15709 (2013). CASPubMedPubMed Central Google Scholar
Yu, C. W., Chang, P. T., Hsin, L. W. & Chern, J. W. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer's disease. J. Med. Chem.56, 6775–6791 (2013). CASPubMed Google Scholar
Balasubramanian, S. et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia22, 1026–1034 (2008). CASPubMed Google Scholar
Suzuki, T. et al. Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries. J. Med. Chem.55, 9562–9575 (2012). CASPubMed Google Scholar
Saha, A. et al. Synthesis and biological evaluation of a targeted DNA-binding transcriptional activator with HDAC8 inhibitory activity. Bioorg. Med. Chem.21, 4201–4209 (2013). CASPubMed Google Scholar
Olson, D. E. et al. Discovery of the first histone deacetylase 6/8 dual inhibitors. J. Med. Chem.56, 4816–4820 (2013). CASPubMed Google Scholar
Ruefli, A. A. et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl Acad. Sci. USA98, 10833–10838 (2001). CASPubMedPubMed Central Google Scholar
Rosato, R. R., Almenara, J. A. & Grant, S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res.63, 3637–3645 (2003). CASPubMed Google Scholar
Butler, L. M. et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc. Natl Acad. Sci. USA99, 11700–11705 (2002). CASPubMedPubMed Central Google Scholar
Robert, C. & Rassool, F. V. HDAC inhibitors: roles of DNA damage and repair. Adv. Cancer Res.116, 87–129 (2012). CASPubMed Google Scholar
Kachhap, S. K. et al. Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS ONE5, e11208 (2010). PubMedPubMed Central Google Scholar
Petruccelli, L. A. et al. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS ONE6, e20987 (2011). CASPubMedPubMed Central Google Scholar
Conti, C. et al. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res.70, 4470–4480 (2010). CASPubMedPubMed Central Google Scholar
Dai, Y., Rahmani, M., Dent, P. & Grant, S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-κB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol. Cell. Biol.25, 5429–5444 (2005). CASPubMedPubMed Central Google Scholar
Chen, C. S. et al. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res.67, 5318–5327 (2007). CASPubMed Google Scholar
Newbold, A., Salmon, J., Stanley, K. & Johnstone, R. The role of p21waf1/cip1 and p27Kip1 in HDACi-mediated tumor cell death and cell cycle arrest. Oncogenehttp://dx.doi.org/10.1038/onc.2013.482 (2013).
Lindemann, R. K., Gabrielli, B. & Johnstone, R. W. Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle3, 779–788 (2004). CASPubMed Google Scholar
Gabrielli, B. & Brown, M. Histone deacetylase inhibitors disrupt the mitotic spindle assembly checkpoint by targeting histone and nonhistone proteins. Adv. Cancer Res.116, 1–37 (2012). CASPubMed Google Scholar
Qiu, L. et al. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol. Biol. Cell11, 2069–2083 (2000). CASPubMedPubMed Central Google Scholar
Munro, J., Barr, N. I., Ireland, H., Morrison, V. & Parkinson, E. K. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp. Cell Res.295, 525–538 (2004). CASPubMed Google Scholar
Rebbaa, A., Zheng, X., Chu, F. & Mirkin, B. L. The role of histone acetylation versus DNA damage in drug-induced senescence and apoptosis. Cell Death Differ.13, 1960–1967 (2006). CASPubMed Google Scholar
Place, R. F., Noonan, E. J. & Giardina, C. HDACs and the senescent phenotype of WI-38 cells. BMC Cell Biol.6, 37 (2005). PubMedPubMed Central Google Scholar
Terao, Y. et al. Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells. Int. J. Cancer94, 257–267 (2001). CASPubMed Google Scholar
Pazolli, E. et al. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res.72, 2251–2261 (2012). CASPubMedPubMed Central Google Scholar
Ablain, J. & de The, H. Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood117, 5795–5802 (2011). CASPubMed Google Scholar
Gottlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J.20, 6969–6978 (2001). CASPubMedPubMed Central Google Scholar
Leiva, M. et al. Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL. Leukemia26, 1630–1637 (2012). CASPubMed Google Scholar
Lin, R. J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature391, 811–814 (1998). CASPubMed Google Scholar
Fredly, H. et al. The combination of valproic acid, all-trans retinoic acid and low-dose cytarabine as disease-stabilizing treatment in acute myeloid leukemia. Clin. Epigenet.5, 13 (2013). Google Scholar
Cimino, G. et al. Sequential valproic acid/all-trans retinoic acid treatment reprograms differentiation in refractory and high-risk acute myeloid leukemia. Cancer Res.66, 8903–8911 (2006). CASPubMed Google Scholar
Lee, Y. J. et al. Molecular mechanism of SAHA on regulation of autophagic cell death in tamoxifen-resistant MCF-7 breast cancer cells. Int. J. Med. Sci.9, 881–893 (2012). CASPubMedPubMed Central Google Scholar
Robert, T. et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature471, 74–79 (2011). CASPubMedPubMed Central Google Scholar
Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA101, 18030–18035 (2004). CASPubMedPubMed Central Google Scholar
Liu, Y. L. et al. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy6, 1057–1065 (2010). CASPubMed Google Scholar
Gammoh, N. et al. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc. Natl Acad. Sci. USA109, 6561–6565 (2012). CASPubMedPubMed Central Google Scholar
Dupere-Richer, D. et al. Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance. Cell Death Dis.4, e486 (2013). CASPubMedPubMed Central Google Scholar
Song, W. et al. HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia25, 161–168 (2011). CASPubMed Google Scholar
Ning, Z. Q. et al. Chidamide (CS055/HBI-8000): a new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity. Cancer Chemother. Pharmacol.69, 901–909 (2012). CASPubMed Google Scholar
Murakami, T. et al. Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma. J. Invest. Dermatol.128, 1506–1516 (2008). CASPubMed Google Scholar
Northrop, J. K., Wells, A. D. & Shen, H. Cutting edge: chromatin remodeling as a molecular basis for the enhanced functionality of memory CD8 T cells. J. Immunol.181, 865–868 (2008). CASPubMed Google Scholar
Fann, M. et al. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response. Blood108, 3363–3370 (2006). CASPubMedPubMed Central Google Scholar
Shen, L. et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS ONE7, e30815 (2012). CASPubMedPubMed Central Google Scholar
Bridle, B. W. et al. HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol. Ther.21, 887–894 (2013). CASPubMedPubMed Central Google Scholar
Shen, L. & Pili, R. Class I histone deacetylase inhibition is a novel mechanism to target regulatory T cells in immunotherapy. Oncoimmunology1, 948–950 (2012). PubMedPubMed Central Google Scholar
Villagra, A., Sotomayor, E. M. & Seto, E. Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene29, 157–173 (2010). CASPubMed Google Scholar
Cantley, M. D. & Haynes, D. R. Epigenetic regulation of inflammation: progressing from broad acting histone deacetylase (HDAC) inhibitors to targeting specific HDACs. Inflammopharmacology21, 301–307 (2013). CASPubMed Google Scholar
Schmudde, M., Friebe, E., Sonnemann, J., Beck, J. F. & Broker, B. M. Histone deacetylase inhibitors prevent activation of tumour-reactive NK cells and T cells but do not interfere with their cytolytic effector functions. Cancer Lett.295, 173–181 (2010). CASPubMed Google Scholar
Reddy, P. et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl Acad. Sci. USA101, 3921–3926 (2004). CASPubMedPubMed Central Google Scholar
Reddy, P. et al. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase-dependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest.118, 2562–2573 (2008). This study provides preclinical evidence that HDAC inhibitors may be effective in immune-based disorders. CASPubMedPubMed Central Google Scholar
Kwon, H. J., Kim, M. S., Kim, M. J., Nakajima, H. & Kim, K. W. Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. Int. J. Cancer97, 290–296 (2002). CASPubMed Google Scholar
Williams, R. J. Trichostatin A, an inhibitor of histone deacetylase, inhibits hypoxia-induced angiogenesis. Expert Opin. Investig. Drugs10, 1571–1573 (2001). CASPubMed Google Scholar
Deroanne, C. F. et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene21, 427–436 (2002). CASPubMed Google Scholar
Ellis, L., Hammers, H. & Pili, R. Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett.280, 145–153 (2009). CASPubMed Google Scholar
Ryu, H. et al. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc. Natl Acad. Sci. USA100, 4281–4286 (2003). CASPubMedPubMed Central Google Scholar
Langley, B. et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J. Neurosci.28, 163–176 (2008). CASPubMedPubMed Central Google Scholar
Leng, Y. & Chuang, D. M. Endogenous α-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J. Neurosci.26, 7502–7512 (2006). CASPubMedPubMed Central Google Scholar
Saunders, K. O., Freel, S. A., Overman, R. G., Cunningham, C. K. & Tomaras, G. D. Epigenetic regulation of CD8+ T-lymphocyte mediated suppression of HIV-1 replication. Virology405, 234–242 (2010). CASPubMed Google Scholar