Progress and problems with the use of viral vectors for gene therapy (original) (raw)
Scollay, R. Gene therapy: a brief overview of the past, present, and future. Ann. NY Acad. Sci.953, 26–30 2001). ArticleCASPubMed Google Scholar
Clark, K., Liu, X., McGrath, J. P. & Johnson, P. R. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum. Gene Ther.10, 1031–1039 (1999). ArticleCASPubMed Google Scholar
Green, A. et al. A new scalable method for the purification of recombinant adenovirus vectors. Hum. Gene Ther.13, 1921–1934 (2002). ArticleCASPubMed Google Scholar
Kay, M. A. & Woo, S. L. Gene therapy for metabolic disorders. Trends Genet.10, 253–257 (1994). ArticleCASPubMed Google Scholar
Lowenstein, P. Why are we doing so much cancer gene therapy? Disentangling the scientific basis from the origins of gene therapy. Gene Ther.4, 755–756 (1997). ArticleCASPubMed Google Scholar
Baekelandt, V., De Strooper, B., Nuttin, B. & Debyser, Z. Gene therapeutic strategies for neurodegenerative diseases. Curr. Opin. Mol. Ther.2, 540–554 (2000). CASPubMed Google Scholar
Kay, M. A., Glorioso, J. C. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature Med.7, 33–40 (2001). ArticleCASPubMed Google Scholar
Pannell, D. & Ellis, J. Silencing of gene expression: implications for design of retrovirus vectors. Rev. Med. Virol.11, 205–217 (2001). ArticleCASPubMed Google Scholar
Parveen, Z. et al. Spleen necrosis virus-derived C-type retroviral vectors for gene transfer to quiescent cells. Nature Biotechnol.18, 623–629 (2000). ArticleCAS Google Scholar
Naldini, L., Blomer, U., Gage, F. H., Trono, D. & Verma, I. M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl Acad. Sci. USA93, 11382–11388 (1996). ArticleCASPubMedPubMed Central Google Scholar
Bosch, A., Perret, E., Desmaris, N., Trono, D. & Heard, J. M. Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum. Gene Ther.11, 1139–1150 (2000). ArticleCASPubMed Google Scholar
Consiglio, A. et al. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nature Med.7, 310–316 (2001). ArticleCASPubMed Google Scholar
Kordower, J. H. et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science290, 767–773 (2000). The first successful gene therapy of Parkinson disease in a primate model. ArticleCASPubMed Google Scholar
Park, F., Ohashi, K., Chiu, W., Naldini, L. & Kay, M. A. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nature Genet.24, 49–52 (2000). This study shows that not all non-dividing cell types can be efficiently transduced by lentivirus vectors. ArticleCASPubMed Google Scholar
Alemany, R., Balague, C. & Curiel, D. T. Replicative adenoviruses for cancer therapy. Nature Biotechnol.18, 723–727 (2000). ArticleCAS Google Scholar
Isner, J. M. & Asahara, T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest.103, 1231–1236 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gerdes, C. A., Castro, M. G. & Lowenstein, P. R. Strong promoters are the key to highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo. Mol. Ther.2, 330–338 (2000). ArticleCASPubMed Google Scholar
Kay, M. A. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genet.24, 257–261 (2000). ArticleCASPubMed Google Scholar
Latchman, D. S. Gene delivery and gene therapy with herpes simplex virus-based vectors. Gene264, 1–9 (2001). ArticleCASPubMed Google Scholar
Wade-Martins, R., Smith, E. R., Tyminski, E., Chiocca, E. A. & Saeki, Y. An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nature Biotechnol.19, 1067–1070 (2001). This study shows that herpes-virus amplicons can be used to deliver DNA constructs that are larger than 100 bp. ArticleCAS Google Scholar
Burton, E. A. et al. Multiple applications for replication-defective herpes simplex virus vectors. Stem Cells19, 358–377 (2001). ArticleCASPubMed Google Scholar
Recchia, A. et al. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc. Natl Acad. Sci. USA96, 2615–2620 (1999). ArticleCASPubMedPubMed Central Google Scholar
Costantini, L. C. et al. Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum. Gene Ther.10, 2481–2494 (1999). ArticleCASPubMed Google Scholar
Yant, S. R. et al. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nature Biotechnol.20, 999–1005 (2002). ArticleCAS Google Scholar
McCormick, F. Cancer gene therapy: fringe or cutting edge? Nature Rev. Cancer1, 130–141 (2001). ArticleCAS Google Scholar
Kirn, D., Martuza, R. L. & Zwiebel, J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nature Med.7, 781–787 (2001). ArticleCASPubMed Google Scholar
Khuri, F. R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med.6, 879–885 (2000). This study shows that conditionally replicating adenovirus vectors in combination with chemotherapy can reduce tumour mass in cancer patients. ArticleCASPubMed Google Scholar
Thomas, C. E., Schiedner, G., Kochanek, S., Castro, M. G. & Lowenstein, P. R. Preexisting antiadenoviral immunity is not a barrier to efficient and stable transduction of the brain, mediated by novel high-capacity adenovirus vectors. Hum. Gene Ther.12, 839–846 (2001). ArticleCASPubMed Google Scholar
Kafri, T. et al. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc. Natl Acad. Sci. USA95, 11377–11382 (1998). ArticleCASPubMedPubMed Central Google Scholar
Morsy, M. A. & Caskey, C. T. Expanded-capacity adenoviral vectors — the helper-dependent vectors. Mol. Med. Today5, 18–24 (1999). ArticleCASPubMed Google Scholar
Ehrhardt, A. & Kay, M. A. A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood99, 3923–3930 (2002). ArticleCASPubMed Google Scholar
Kim, I. H., Jozkowicz, A., Piedra, P. A., Oka, K. & Chan, L. Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc. Natl Acad. Sci. USA98, 13282–13287 (2001). ArticleCASPubMedPubMed Central Google Scholar
DelloRusso, C. et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc. Natl Acad. Sci. USA99, 12979–12984 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chuah, M. K. et al. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood101, 1734–1743 (2003). ArticleCASPubMed Google Scholar
Thomas, C. E., Schiedner, G., Kochanek, S., Castro, M. G. & Lowenstein, P. R. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc. Natl Acad. Sci. USA97, 7482–7487 (2000). ArticleCASPubMedPubMed Central Google Scholar
Thomas, C. E., Birkett, D., Anozie, I., Castro, M. G. & Lowenstein, P. R. Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol. Ther.3, 36–46 (2001). ArticleCASPubMed Google Scholar
Morral, N. et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum. Gene Ther.13, 143–154 (2002). ArticleCASPubMed Google Scholar
Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum. Gene Ther.13, 3–13 (2002). The official report into adenovirus vector toxicity, which was prompted by the death of Jesse Gelsinger in 1999. This special issue also contains many other papers relating to adenovirus toxicity.
Brockstedt, D. G. et al. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin. Immunol.92, 67–75 (1999). ArticleCASPubMed Google Scholar
Halbert, C. L., Rutledge, E. A., Allen, J. M., Russell, D. W. & Miller, A. D. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J. Virol.74, 1524–1532 (2000). ArticleCASPubMedPubMed Central Google Scholar
Morral, N. et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc. Natl Acad. Sci. USA96, 12816–12821 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lewandoski, M. Conditional control of gene expression in the mouse. Nature Rev. Genet.2, 743–755 (2001). ArticleCASPubMed Google Scholar
Somia, N. & Verma, I. M. Gene therapy: trials and tribulations. Nature Rev. Genet.1, 91–99 (2000). ArticleCASPubMed Google Scholar
Shayakhmetov, D. M., Papayannopoulou, T., Stamatoyannopoulos, G. & Lieber, A. Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J. Virol.74, 2567–2583 (2000). ArticleCASPubMedPubMed Central Google Scholar
Grimm, D. & Kay, M. A. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr. Gene Ther. (in the press).
Rabinowitz, J. E. et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol.76, 791–801 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gao, G. P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. USA99, 11854–11859 (2002). ArticleCASPubMedPubMed Central Google Scholar
Douglas, J. T. et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nature Biotechnol.17, 470–475 (1999). ArticleCAS Google Scholar
Snitkovsky, S. & Young, J. A. Targeting retroviral vector infection to cells that express heregulin receptors using a TVA-heregulin bridge protein. Virology292, 150–155 (2002). ArticleCASPubMed Google Scholar
Ponnazhagan, S., Mahendra, G., Kumar, S., Thompson, J. A. & Castillas, M. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J. Virol.76, 12900–12907 (2002). ArticleCASPubMedPubMed Central Google Scholar
Reynolds, P. N. et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nature Biotechnol.19, 838–842 (2001). ArticleCAS Google Scholar
Khare, P. D. et al. Tumor growth suppression by a retroviral vector displaying scFv antibody to CEA and carrying the iNOS gene. Anticancer Res.22, 2443–2446 (2002). CASPubMed Google Scholar
Hidaka, C. et al. CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. J. Clin. Invest.103, 579–587 (1999). ArticleCASPubMedPubMed Central Google Scholar
Thomas, C. E., Edwards, P., Wickham, T. J., Castro, M. G. & Lowenstein, P. R. Adenovirus binding to the coxsackievirus and adenovirus receptor or integrins is not required to elicit brain inflammation but is necessary to transduce specific neural cell types. J. Virol.76, 3452–3460 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lavillette, D., Russell, S. J. & Cosset, F. L. Retargeting gene delivery using surface-engineered retroviral vector particles. Curr. Opin. Biotechnol.12, 461–466 (2001). ArticleCASPubMed Google Scholar
Girod, A. et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nature Med.5, 1438 (1999). ArticleCASPubMed Google Scholar
Wu, P. et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J. Virol.74, 8635–8647 (2000). ArticleCASPubMedPubMed Central Google Scholar
Xie, Q. et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc. Natl Acad. Sci. USA99, 10405–10410 (2002). ArticleCASPubMedPubMed Central Google Scholar
Soong, N. W. et al. Molecular breeding of viruses. Nature Genet.25, 436–439 (2000). A combinatorial DNA-shuffling approach to genetically engineering retroviruses with altered tropism. ArticleCASPubMed Google Scholar
Perabo, L. et al. Adeno-associated virus display: a combinatorial library for the generation of retargeted vectors. Mol. Ther.5, S303 (2002). Google Scholar
Stocking, C. et al. Distinct classes of factor-independent mutants can be isolated after retroviral mutagenesis of a human myeloid stem cell line. Growth Factors8, 197–209 (1993). ArticleCASPubMed Google Scholar
Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science288, 669–672 (2000). The first gene-therapy cure. ArticleCASPubMed Google Scholar
Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med.348, 255–256 (2003). A report of the development of leukaemia in a patient that had been successfully cured of SCID-XI. ArticlePubMed Google Scholar
Baum, C. et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood101, 2099–2114 (2003). A comprehensive and useful review that discusses the challenges and potential risks that are associated with haematopoietic gene-therapy approaches using retroviral vectors. ArticleCASPubMed Google Scholar
Schroder, A. R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell110, 521–529 (2002). Surprising evidence that retroviral genomes do not integrate randomly, but show a predilection for integrating into active genes. ArticleCASPubMed Google Scholar
Olivares, E. C. et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nature Biotechnol.20, 1124–1128 (2002). Targeted sequence-specific integration of an hFIX expression cassette that is mediated by a bacteriophage integrase system. ArticleCAS Google Scholar
Ortiz-Urda, S. et al. Stable nonviral genetic correction of inherited human skin disease. Nature Med.8, 1166–1170 (2002). ArticleCASPubMed Google Scholar
Groth, A., Olivares, E. C., Thyagarajan, B. & Calos, M. P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl Acad. Sci. USA97, 5995–6000 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nakai, H. et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J. Virol.75, 6969–6976 (2001). Shows that <10% of rAAV2 genomes integrate into the chromatin of transduced hepatocytes and that most gene expression derives from persistent episomal forms. ArticleCASPubMedPubMed Central Google Scholar
Miller, D. G., Rutledge, E. A. & Russell, D. W. Chromosomal effects of adeno-associated virus vector integration. Nature Genet.30, 147–148 (2002). Shows that the integration of rAAV genomes into host chromatin is usually associated with chromosomal rearrangements, including deletions and translocations. ArticleCASPubMed Google Scholar
Russell, D. W., Alexander, I. E. & Miller, A. D. DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc. Natl Acad. Sci. USA92, 5719–5723 (1995). ArticleCASPubMedPubMed Central Google Scholar
Alexander, I. E., Russell, D. W. & Miller, A. D. DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J. Virol.68, 8282–8287 (1994). ArticleCASPubMedPubMed Central Google Scholar
Nakai, H. et al. A limited number of transducible hepatocytes restricts a wide-range linear vector dose response in recombinant adeno-associated virus-mediated liver transduction. J. Virol.76, 11343–11349 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sclimenti, C. R. & Calos, M. P. Epstein–Barr virus vectors for gene expression and transfer. Curr. Opin. Biotechnol.9, 476–479 (1998). ArticleCASPubMed Google Scholar
Hill, C. L., Bieniasz, P. D. & McClure, M. O. Properties of human foamy virus relevant to its development as a vector for gene therapy. J. Gen. Virol.80, 2003–2009 (1999). ArticleCASPubMed Google Scholar
Strayer, D. S. Gene therapy using SV40-derived vectors: what does the future hold? J. Cell. Physiol.181, 375–384 (1999). ArticleCASPubMed Google Scholar
Wahlfors, J. J., Zullo, S. A., Loimas, S., Nelson, D. M. & Morgan, R. A. Evaluation of recombinant α-viruses as vectors in gene therapy. Gene Ther.7, 472–480 (2000). ArticleCASPubMed Google Scholar
Palese, P., Zheng, H., Engelhardt, O. G., Pleschka, S. & Garcia-Sastre, A. Negative-strand RNA viruses: genetic engineering and applications. Proc. Natl Acad. Sci. USA93, 11354–11358 (1996). ArticleCASPubMedPubMed Central Google Scholar
Thyagarajan, B., Olivares, E. C., Hollis, R. P., Ginsburg, D. S. & Calos, M. P. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell Biol.21, 3926–3934 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sclimenti, C. R., Thyagarajan, B. & Calos, M. P. Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res.29, 5044–5051 (2001). ArticleCASPubMedPubMed Central Google Scholar
Xia, H., Mao, Q., Paulson, H. L. & Davidson, B. L. siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnol.20, 1006–1010 (2002). The first description of siRNA expressed from a viral vector. ArticleCAS Google Scholar
Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet.33, 401–406 (2003). ArticleCASPubMed Google Scholar
Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genet.33, 396–400 (2003). ArticleCASPubMed Google Scholar
Clark, K. R. & Johnson, P. R. Gene delivery of vaccines for infectious disease. Curr. Opin. Mol. Ther.3, 375–384 (2001). CASPubMed Google Scholar
Marshall, E. Gene therapy death prompts review of adenovirus vector. Science286, 2244–2245 (1999). ArticleCASPubMed Google Scholar
Schnell, M. A. et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol. Ther.3, 708–722 (2001). ArticleCASPubMed Google Scholar
Zennou, V. et al. The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nature Biotechnol.19, 446–450 (2001). Indicates the importance of the cPPT sequence for efficient transduction by lentiviruses. ArticleCAS Google Scholar
Zennou, V. et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell101, 173–185 (2000). ArticleCASPubMed Google Scholar
Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genet.25, 217–222 (2000). ArticleCASPubMed Google Scholar
Dvorin, J. D. et al. Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J. Virol.76, 12087–12096 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lusky, M. et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J. Virol.72, 2022–2032 (1998). ArticleCASPubMedPubMed Central Google Scholar
O'Neal, W. K. et al. Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing α1-antitrypsin after systemic delivery. Hum. Gene Ther.9, 1587–1598 (1998). ArticleCASPubMed Google Scholar
Andrews, J. L., Kadan, M. J., Gorziglia, M. I., Kaleko, M. & Connelly, S. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII. Mol. Ther.3, 329–336 (2001). ArticleCASPubMed Google Scholar
McCarty, D. M., Monahan, P. E. & Samulski, R. J. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther.8, 1248–1254 (2001). ArticleCASPubMed Google Scholar
Nakai, H., Iwaki, Y., Kay, M. A. & Couto, L. B. Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. J. Virol.73, 5438–5447 (1999). ArticleCASPubMedPubMed Central Google Scholar
Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol.72, 8568–8577 (1998). ArticleCASPubMedPubMed Central Google Scholar
Duan, D., Yue, Y., Yan, Z. & Engelhardt, J. F. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nature Med.6, 595–598 (2000). ArticleCASPubMed Google Scholar
Nakai, H., Storm, T. A. & Kay, M. A. Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nature Biotechnol.18, 527–532 (2000). References 104–106 show that the limited packaging capacity of AAV2 can be overcome by exploitingin vivoconcatemerization of two rAAV genomes, each carrying one-half of an expression cassette. ArticleCAS Google Scholar
Sun, L., Li, J. & Xiao, X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nature Med.6, 599–602 (2000). ArticleCASPubMed Google Scholar
Samaniego, L. A., Wu, N. & DeLuca, N. A. The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J. Virol.71, 4614–4625 (1997). ArticleCASPubMedPubMed Central Google Scholar
Samaniego, L. A., Neiderhiser, L. & DeLuca, N. A. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J. Virol.72, 3307–3320 (1998). ArticleCASPubMedPubMed Central Google Scholar
Thomas, S. K., Lilley, C. E., Latchman, D. S. & Coffin, R. S. A protein encoded by the herpes simplex virus (HSV) type 1 2-kilobase latency-associated transcript is phosphorylated, localized to the nucleus, and overcomes the repression of expression from exogenous promoters when inserted into the quiescent HSV genome. J. Virol.76, 4056–4067 (2002). ArticleCASPubMedPubMed Central Google Scholar
Palmer, J. A. et al. Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J. Virol.74, 5604–5618 (2000). ArticleCASPubMedPubMed Central Google Scholar
Martuza, R. L., Malick, A., Markert, J. M., Ruffner, K. L. & Coen, D. M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science252, 854–856 (1991). ArticleCASPubMed Google Scholar
Mineta, T., Rabkin, S. D., Yazaki, T., Hunter, W. D. & Martuza, R. L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Med.1, 938–943 (1995). ArticleCASPubMed Google Scholar
Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science274, 373–376 (1996). ArticleCASPubMed Google Scholar
Nemunaitis, J. et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res.60, 6359–6366 (2000). CASPubMed Google Scholar
Kirn, D. Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene19, 6660–6669 (2000). ArticleCASPubMed Google Scholar
Harada, J. N. & Berk, A. J. p53-independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J. Virol.73, 5333–5344 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rothmann, T., Hengstermann, A., Whitaker, N. J., Scheffner, M. & zur Hausen, H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J. Virol.72, 9470–9478 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ries, S. J. et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nature Med.6, 1128–1133 (2000). ArticleCASPubMed Google Scholar
Steinwaerder, D. S. et al. Tumor-specific gene expression in hepatic metastases by a replication-activated adenovirus vector. Nature Med.7, 240–243 (2001). ArticleCASPubMed Google Scholar