Gardening the genome: DNA methylation in Arabidopsis thaliana (original) (raw)
Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet.13, 335–340 (1997). ArticleCASPubMed Google Scholar
Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science293, 1070–1074 (2001). ArticleCASPubMed Google Scholar
Singer, T., Yordan, C. & Martienssen, R. A. Robertson's Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene DECREASE IN DNA METHYLATION (DDM1). Genes Dev.15, 591–602 (2001). ArticleCASPubMedPubMed Central Google Scholar
Miura, A. et al. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature411, 212–214 (2001). ArticleCASPubMed Google Scholar
ten Lohuis, M. R. & Miller, D. J. Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae hulburt (Dinophycae). Plant Physiol.117, 189–196 (1998). ArticleCASPubMedPubMed Central Google Scholar
Colot, V. & Rossignol, J. L. Eukaryotic DNA methylation as an evolutionary device. Bioessays21, 402–411 (1999). ArticleCASPubMed Google Scholar
Fronk, J. & Magiera, R. DNA methylation during differentiation of a lower eukaryote, Physarum polycephalum. Biochem. J.304 (Part 1), 101–104 (1994). ArticleCASPubMedPubMed Central Google Scholar
Gutierrez, J. C., Callejas, S., Borniquel, S. & Martin-Gonzalez, A. DNA methylation in ciliates: implications in differentiation processes. Int. Microbiol.3, 139–146 (2000). CASPubMed Google Scholar
Fisher, O., Siman-Tov, R. & Ankri, S. Characterization of cytosine methylated regions and 5-cytosine DNA methyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica. Nucleic Acids Res.32, 287–297 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lyko, F., Whittaker, A. J., Orr-Weaver, T. L. & Jaenisch, R. The putative Drosophila methyltransferase gene dDnmt2 is contained in a transposon-like element and is expressed specifically in ovaries. Mech. Dev.95, 215–217 (2000). ArticleCASPubMed Google Scholar
Kreppel, L. et al. dictyBase: a new Dictyostelium discoideum genome database. Nucleic Acids Res.32 (Database issue), D332–D333 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gutierrez, A. & Sommer, R. J. Evolution of dnmt-2 and _mbd-2_-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Res.32, 6388–6396 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cheng, X. Structure and function of DNA methyltransferases. Annu. Rev. Biophys. Biomol. Struct.24, 293–318 (1995). ArticleCASPubMed Google Scholar
Bender, J. & Fink, G. R. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell83, 725–734 (1995). ArticleCASPubMed Google Scholar
Kinoshita, T. et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science303, 521–523 (2004). Demonstrates thatFWAis a maternally imprinted gene in the endosperm. Monoallelic expression is controlled byDMEand involves demethylation, establishing a new model of 'one-way' imprinting in plants. ArticleCASPubMed Google Scholar
Lawrence, R. J. et al. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell13, 599–609 (2004). ArticleCASPubMed Google Scholar
Ramsahoye, B. H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA97, 5237–5242 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hirochika, H., Okamoto, H. & Kakutani, T. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell12, 357–369 (2000). ArticleCASPubMedPubMed Central Google Scholar
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature408, 796–815 (2000).
Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature430, 471–476 (2004). Large-scale analysis of the heterochromatic knob on chromosome 4 that provides new insight into the relationships between DNA methylation, histone modifications and small RNAs. ArticleCASPubMed Google Scholar
Craig, N. L., Craigie, R. C., Gellert, M. & Lambowitz, A. M. Mobile DNA II 3–12 (American Society for Microbiology, Washington DC, 2002). Book Google Scholar
Cao, X. & Jacobsen, S. E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc. Natl Acad. Sci. USA99, 16491–16498 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science303, 1336 (2004). Shows that, surprisingly, RNAi proteins are needed to establish DNA methylation at a directly repeated sequence. ArticleCASPubMed Google Scholar
Zilberman, D. et al. Role of Arabidopsis ARGONAUTE 4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol.14, 1214–1220 (2004). ArticleCASPubMed Google Scholar
Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J.19, 5194–5201 (2000). ArticleCASPubMedPubMed Central Google Scholar
Soppe, W. J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell6, 791–802. (2000). ArticleCASPubMed Google Scholar
Park, Y. D. et al. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J.9, 183–194 (1996). ArticleCASPubMed Google Scholar
Stam, M., Viterbo, A., Mol, J. N. & Kooter, J. M. Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol. Cell Biol.18, 6165–6177 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sieburth, L. E. & Meyerowitz, E. M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell9, 355–365 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ito, T., Sakai, H. & Meyerowitz, E. M. Whorl-specific expression of the SUPERMAN gene of Arabidopsis is mediated by cis elements in the transcribed region. Curr. Biol.13, 1524–1530 (2003). ArticleCASPubMed Google Scholar
Tran, R. K. et al. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr. Biol.15, 154–159 (2005). ArticleCASPubMed Google Scholar
Rountree, M. R. & Selker, E. U. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev.11, 2383–2395 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell76, 567–576 (1994). The first demonstration that RNA can guide DNA methylation in any organism. ArticleCASPubMed Google Scholar
Angell, S. M. & Baulcombe, D. C. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J.16, 3675–3684 (1997). ArticleCASPubMedPubMed Central Google Scholar
Dalmay, T., Hamilton, A., Mueller, E. & Baulcombe, D. C. Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell12, 369–379 (2000). ArticleCASPubMedPubMed Central Google Scholar
Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature431, 343–349 (2004). ArticleCASPubMed Google Scholar
Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell101, 533–542 (2000). ArticleCASPubMed Google Scholar
Dalmay, T., Horsefield, R., Braunstein, T. H. & Baulcombe, D. C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J.20, 2069–2078 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell101, 543–553 (2000). ArticleCASPubMed Google Scholar
Mochizuki, K., Fine, N., Fujisawa, T. & Gorovsky, M. Analysis of a _piwi_-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell110, 689 (2002). ArticleCASPubMed Google Scholar
Yao, M. C., Fuller, P. & Xi, X. Programmed DNA deletion as an RNA-guided system of genome defense. Science300, 1581–1584 (2003). ArticleCASPubMed Google Scholar
Taverna, S., Coyne, R. & Allis, C. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell110, 701 (2002). ArticleCASPubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). Pioneering study revealing that small RNAs in the RNAi pathway can transcriptionally silence genes and are required for centromeric heterochromatin inS. pombe. ArticleCASPubMed Google Scholar
Kawasaki, H. & Taira, K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature431, 211–217 (2004). ArticleCASPubMed Google Scholar
Morris, K. V., Chan, S. W., Jacobsen, S. E. & Looney, D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science305, 1289–1292 (2004). ArticleCASPubMed Google Scholar
Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet.6, 24–35 (2005). ArticleCASPubMed Google Scholar
Cao, X. et al. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl Acad. Sci. USA97, 4979–4984 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cao, X. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol13, 2212–2217 (2003). ArticleCASPubMed Google Scholar
Cao, X. & Jacobsen, S. E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol.12, 1138–1144 (2002). Characterization of the role of the plantde novoDRM methyltransferases in establishing gene silencing. ArticleCASPubMed Google Scholar
Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J.21, 4671–4679 (2002). Provides a new insight into the diversity of small RNA pathways in plants, revealing that there are two main size classes of siRNA associated with different modes of silencing. ArticleCASPubMedPubMed Central Google Scholar
Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol.2, e104 (2004). Genetic demonstration that distinct RNAi proteins are specialized for different functions in development, gene silencing and viral resistance. ArticlePubMedPubMed Central Google Scholar
Schauer, S. E., Jacobsen, S. E., Meinke, D. W. & Ray, A. DICER-LIKE 1: blind men and elephants in Arabidopsis development. Trends Plant Sci.7, 487–491 (2002). ArticleCASPubMed Google Scholar
Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev.16, 2733–2742 (2002). ArticleCASPubMed Google Scholar
Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D. P. The action of ARGONAUTE 1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev.18, 1187–1197 (2004). ArticleCASPubMedPubMed Central Google Scholar
Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J.21, 6842–6852 (2002). Together with reference 102, this paper reveals that histone methylation functions to control CNG DNA methylation inA. thaliana. This paper also demonstrates genetically that theA. thalianahomologue ofHETEROCHROMATIN PROTEIN 1is not involved in this pathway. ArticleCASPubMedPubMed Central Google Scholar
Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA102, 152–157 (2005). ArticleCASPubMed Google Scholar
Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell119, 789–802 (2004). ArticleCASPubMed Google Scholar
Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science 24 February 2005 (10.1126/science.1106910).
Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell120, 613–622 (2005). References 61 and 62 provide an exciting role for RNA pol IV in transcriptional silencing and support a model in which surveillance transcription is used to direct DNA methylation. ArticleCASPubMed Google Scholar
Fransz, P., De Jong, J. H., Lysak, M., Castiglione, M. R. & Schubert, I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl Acad. Sci. USA99, 14584–14589 (2002). ArticleCASPubMedPubMed Central Google Scholar
Soppe, W. J. et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J.21, 6549–6559 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ronemus, M. J., Galbiati, M., Ticknor, C., Chen, J. & Dellaporta, S. L. Demethylation-induced developmental pleiotropy in Arabidopsis. Science273, 654–657 (1996). ArticleCASPubMed Google Scholar
Finnegan, E. J., Peacock, W. J. & Dennis, E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl Acad. Sci. USA93, 8449–8454 (1996). ArticleCASPubMedPubMed Central Google Scholar
Saze, H., Scheid, O. M. & Paszkowski, J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nature Genet.34, 65–69 (2003). Nullmet1mutants display immediate effects on gene silencing owing to a loss of DNA methylation in the gametophytic generation. Reference 81 extends this study to reveal that CG methylation also controls non-CG methylation and histone methylation. ArticleCASPubMed Google Scholar
Jacobsen, S. E., Sakai, H., Finnegan, E. J., Cao, X. & Meyerowitz, E. M. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr. Biol.10, 179–186 (2000). ArticleCASPubMed Google Scholar
Kakutani, T., Jeddeloh, J. A., Flowers, S. K., Munakata, K. & Richards, E. J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl Acad. Sci. USA93, 12406–12411 (1996). ArticleCASPubMedPubMed Central Google Scholar
Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet.22, 94–97 (1999). ArticleCASPubMed Google Scholar
Brzeski, J. & Jerzmanowski, A. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J. Biol. Chem.278, 823–828 (2003). ArticleCASPubMed Google Scholar
Gendrel, A. V., Lippman, Z., Yordan, C., Colot, V. & Martienssen, R. A. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science297, 1871–1873 (2002). ArticleCASPubMed Google Scholar
Johnson, L., Cao, X. & Jacobsen, S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr. Biol.12, 1360–1367 (2002). ArticleCASPubMed Google Scholar
Lippman, Z., May, B., Yordan, C., Singer, T. & Martienssen, R. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol.1, e67 (2003). ArticlePubMedPubMed Central Google Scholar
Dennis, K., Fan, T., Geiman, T., Yan, Q. & Muegge, K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev.15, 2940–2944 (2001). ArticleCASPubMedPubMed Central Google Scholar
Aufsatz, W., Mette, M. F., Van Der Winden, J., Matzke, M. & Matzke, A. J. HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J.21, 6832–41 (2002). ArticleCASPubMedPubMed Central Google Scholar
Murfett, J., Wang, X. J., Hagen, G. & Guilfoyle, T. J. Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell13, 1047–10461 (2001). ArticleCASPubMedPubMed Central Google Scholar
Probst, A. V. et al. Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell16, 1021–1034 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kurdistani, S. K. & Grunstein, M. Histone acetylation and deacetylation in yeast. Nature Rev. Mol. Cell Biol.4, 276–284 (2003). ArticleCAS Google Scholar
Tariq, M. et al. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc. Natl Acad. Sci. USA100, 8823–8827 (2003). See reference 67. ArticleCASPubMedPubMed Central Google Scholar
Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE 3 for maintenance of CpXpG methylation. Science292, 2077–2080 (2001). Together with reference 99, this paper genetically characterizes CMT3 as the plant methyltransferase that functions to maintain CNG DNA methylation. ArticleCASPubMed Google Scholar
Finnegan, E. J. & Dennis, E. S. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res.21, 2383–2388 (1993). ArticleCASPubMedPubMed Central Google Scholar
Kishimoto, N. et al. Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus. Plant Mol. Biol.46, 171–183 (2001). ArticleCASPubMed Google Scholar
Scebba, F. et al. Arabidopsis MBD proteins show different binding specificities and nuclear localization. Plant Mol. Biol.53, 715–731 (2003). ArticleCASPubMed Google Scholar
Berg, A. et al. Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development. Nucleic Acids Res.31, 5291–5304 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zemach, A. & Grafi, G. Characterization of Arabidopsis thaliana methyl-CpG-binding domain (MBD) proteins. Plant J.34, 565–572 (2003). ArticleCASPubMed Google Scholar
Ng, H. H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet.23, 58–61 (1999). ArticleCASPubMed Google Scholar
Fuks, F., Hurd, P. J., Deplus, R. & Kouzarides, T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res.31, 2305–2312 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem.278, 4035–4040 (2003). ArticleCASPubMed Google Scholar
Aufsatz, W., Mette, M. F., Van Der Winden, J., Matzke, A. J. & Matzke, M. RNA-directed DNA methylation in Arabidopsis. Proc. Natl Acad. Sci. USA99, 16499–16506 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jones, L., Ratcliff, F. & Baulcombe, D. C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol.11, 747–757 (2001). ArticleCASPubMed Google Scholar
Aufsatz, W., Mette, M. F., Matzke, A. J. & Matzke, M. The role of MET1 in RNA-directed de novo and maintenance methylation of CG dinucleotides. Plant Mol. Biol.54, 793–804 (2004). ArticleCASPubMed Google Scholar
Wada, Y., Ohya, H., Yamaguchi, Y., Koizumi, N. & Sano, H. Preferential de novo methylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methyltransferase from tobacco plants. J. Biol. Chem.278, 42386–42393 (2003). ArticleCASPubMed Google Scholar
Gruenbaum, Y., Naveh-Many, T., Cedar, H. & Razin, A. Sequence specificity of methylation in higher plant DNA. Nature292, 860–862 (1981). ArticleCASPubMed Google Scholar
Jacobsen, S. E. & Meyerowitz, E. M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science277, 1100–1103 (1997). ArticleCASPubMed Google Scholar
Henikoff, S. & Comai, L. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics149, 307–318 (1998). CASPubMedPubMed Central Google Scholar
Bartee, L., Malagnac, F. & Bender, J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev.15, 1753–1758 (2001). See reference 82. ArticleCASPubMedPubMed Central Google Scholar
Melquist, S. & Bender, J. Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev.17, 2036–2047 (2003). ArticleCASPubMedPubMed Central Google Scholar
Papa, C. M., Springer, N. M., Muszynski, M. G., Meeley, R. & Kaeppler, S. M. Maize chromomethylase Zea methyltransferase 2 is required for CpNpG methylation. Plant Cell13, 1919–1928 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002). See reference 58. ArticleCASPubMed Google Scholar
Lindroth, A. M. et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE 3. EMBO J.23, 4286–4296 (2004). ArticleCASPubMed Google Scholar
Jackson, J. P. et al. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma112, 308–315 (2004). ArticleCASPubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). The first clear genetic demonstration that DNA methylation can be controlled by histone methylation. ArticleCASPubMed Google Scholar
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039–1043 (2002). ArticleCASPubMed Google Scholar
Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science300, 131–135 (2003). ArticleCASPubMed Google Scholar
Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol.14, 801–805 (2004). Intriguing report describing a role for chromatin remodelling in RNA-directed methylation. DRD1 appears to be specialized for the control of methylation at non-CG sequences. ArticleCASPubMed Google Scholar
Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE 4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299, 716–719 (2003). An ARGONAUTE protein controls DNA methylation at a transcriptionally silenced gene, linking RNAi and heterochromatin inA. thaliana. ArticleCASPubMed Google Scholar
Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science301, 1069–1074 (2003). ArticleCASPubMed Google Scholar
Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell111, 803–814 (2002). An exciting report that characterizes a role for DNA glyscosylase/lyase protein ROS1 in antagonizing DNA methylation and gene silencing. The first genetic characterization of the much sought after DNA demethylation pathway. ArticleCASPubMed Google Scholar
Choi, Y. et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell110, 33–42 (2002). DEMETER is a DNA glycosylase/lyase protein, related to ROS1, that has a specialized function in control of monoallelic expression states. Together with reference 17, this paper provides new mechanistic insight into imprinting and a putative demethylation pathway. ArticleCASPubMed Google Scholar
Grossniklaus, U., Vielle-Calzada, J. P., Hoeppner, M. A. & Gagliano, W. B. Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science280, 446–450 (1998). ArticleCASPubMed Google Scholar
Xiao, W. et al. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev. Cell5, 891–901 (2003). ArticleCASPubMed Google Scholar
Tompa, R. et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE 3. Curr. Biol.12, 65–68 (2002). ArticleCASPubMed Google Scholar
Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics85, 1–15 (2005). ArticleCASPubMed Google Scholar
Vongs, A., Kakutani, T., Martienssen, R. A. & Richards, E. J. Arabidopsis thaliana DNA methylation mutants. Science260, 1926–1928 (1993). Groundbreaking forward genetic screen for DNA methylation mutants inA. thaliana, which isolated key factors controlling CG DNA methylation. ArticleCASPubMed Google Scholar
Bao, N., Lye, K. W. & Barton, M. K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell7, 653–662 (2004). ArticleCASPubMed Google Scholar
Ashapkin, V. V., Kutueva, L. I. & Vanyushin, B. F. The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues. FEBS Lett.532, 367–372 (2002). ArticleCASPubMed Google Scholar