Transposable elements and the epigenetic regulation of the genome (original) (raw)
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001). ArticleCASPubMed Google Scholar
Girard, L. & Freeling, M. Regulatory changes as a consequence of transposon insertion. Dev. Genet.25, 291–296 (1999). ArticleCASPubMed Google Scholar
McClintock, B. Components of action of the regulators Spm and Ac. Carnegie Inst. Wash. Year Book64, 527–536 (1965). Google Scholar
Griffith, J. L. et al. Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. Genetics164, 867–879 (2003). CASPubMedPubMed Central Google Scholar
Vastenhouw, N. L. et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr. Biol.13, 1311–1316 (2003). ArticleCASPubMed Google Scholar
Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell99, 123–132 (1999). ArticleCASPubMed Google Scholar
Sijen, T. & Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature426, 310–314 (2003). This report demonstrates that the endogenous RNAi system functions to repress TE activity in a tissue- and developmentally specific manner. ArticleCASPubMed Google Scholar
Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev.20, 1732–1743 (2006). This report confirms the previous findings in non-mammalian eukaryotes that TEs are an important source and target of siRNAs. ArticleCASPubMedPubMed Central Google Scholar
Yang, N. & Kazazian, H. H. Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nature Struct. Mol. Biol.13, 763–771 (2006). This publication demonstrated that siRNAs are generated from TEs in human cells, as well as showing that the LINE1 antisense promoter is essential for the production of these siRNAs. ArticleCAS Google Scholar
Lippman, Z., May, B., Yordan, C., Singer, T. & Martienssen, R. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol.1, e67 (2003). ArticlePubMedPubMed Central Google Scholar
Gendrel, A. V., Lippman, Z., Yordan, C., Colot, V. & Martienssen, R. A. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science297, 1871–1873 (2002). ArticleCASPubMed Google Scholar
Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J.24, 800–812 (2005). ArticleCASPubMedPubMed Central Google Scholar
Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet.20, 116–117 (1998). ArticleCASPubMed Google Scholar
Woodcock, D. M., Lawler, C. B., Linsenmeyer, M. E., Doherty, J. P. & Warren, W. D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J. Biol. Chem.272, 7810–7816 (1997). ArticleCASPubMed Google Scholar
Bourc'his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature431, 96–99 (2004). This study provides evidence of the tissue-specificde novomethylation of retrotransposons in mammals, as well as demonstrating that this methylation is essential for viability. ArticleCASPubMed Google Scholar
Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature430, 471–476 (2004). This study describes the microarray analysis of an entire chromosomal knob, its TE composition and its dependency on DNA methylation and chromatin remodelling. ArticleCASPubMed Google Scholar
Kato, M., Takashima, K. & Kakutani, T. Epigenetic control of CACTA transposon mobility in Arabidopsis thaliana. Genetics168, 961–969 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yan, Q., Cho, E., Lockett, S. & Muegge, K. Association of Lsh, a regulator of DNA methylation, with pericentromeric heterochromatin is dependent on intact heterochromatin. Mol. Cell. Biol.23, 8416–8428 (2003). ArticleCASPubMedPubMed Central Google Scholar
Huang, J. et al. Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res.32, 5019–5028 (2004). This work demonstrates that theSWI/SNF Lsh1gene regulates only repetitive DNA such as TEs, as well as showing the large amount of the genome that is mis-expressed when TE silencing is lost. ArticleCASPubMedPubMed Central Google Scholar
Martienssen, R. A., Zaratiegui, M. & Goto, D. B. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet.21, 450–456 (2005). ArticleCASPubMed Google Scholar
Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell125, 873–886 (2006). ArticleCASPubMed Google Scholar
Irvine, D. V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science313, 1134–1137 (2006). This report demonstrates that the spread of chromatin modifications is dependent on read-through transcription and the catalytic activity of argonaute. ArticleCASPubMed Google Scholar
Hansen, K. R. et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol. Cell. Biol.25, 590–601 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mochizuki, K. & Gorovsky, M. A. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev.14, 181–187 (2004). ArticleCASPubMed Google Scholar
Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J.21, 4671–4679 (2002). This is the first correlation between the TE-produced longer class of siRNAs in plants and their role in DNA methylation. ArticleCASPubMedPubMed Central Google Scholar
Qi, Y. et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature443, 1008–1012 (2006). ArticlePubMed Google Scholar
Herr, A. J., Jensen, M. B., Dalmay, T. & Baulcombe, D. C. RNA polymerase IV directs silencing of endogenous DNA. Science308, 118–120 (2005). ArticleCASPubMed Google Scholar
Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell120, 613–622 (2005). ArticleCASPubMed Google Scholar
Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev.19, 2030–2040 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nature Genet.37, 761–765 (2005). ArticleCASPubMed Google Scholar
Li, C. F. et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell126, 93–106 (2006). ArticleCASPubMed Google Scholar
Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell126, 79–92 (2006). ArticleCASPubMed Google Scholar
Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet.6, 24–35 (2005). ArticleCASPubMed Google Scholar
Cao, X. & Jacobsen, S. E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol.12, 1138–1144 (2002). ArticleCASPubMed Google Scholar
Weinberg, M. S. et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA12, 256–262 (2006). ArticleCASPubMedPubMed Central Google Scholar
Castro, J. P. & Carareto, C. M. Drosophila melanogaster P transposable elements: mechanisms of transposition and regulation. Genetica121, 107–118 (2004). ArticleCASPubMed Google Scholar
Reiss, D., Josse, T., Anxolabehere, D. & Ronsseray, S. aubergine mutations in Drosophila melanogaster impair P cytotype determination by telomeric P elements inserted in heterochromatin. Mol. Genet. Genomics272, 336–343 (2004). This report was the first to link an argonaute gene and RNA-based silencing to thetranssilencing signal in TE cytotype control. ArticleCASPubMed Google Scholar
Kavi, H. H., Fernandez, H. R., Xie, W. & Birchler, J. A. RNA silencing in Drosophila. FEBS Lett.579, 5940–5949 (2005). ArticleCASPubMed Google Scholar
Jensen, S., Gassama, M. P. & Heidmann, T. Taming of transposable elements by homology-dependent gene silencing. Nature Genet.21, 209–212 (1999). This important report shows that a short, non-protein-encoding fragment of a TE can suppress hybrid dysgenesis and transposition activity when the full-length TE enters a naïve genome. ArticleCASPubMed Google Scholar
Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science313, 320–324 (2006). This recent report shows that rasiRNAs are structurally different from siRNAs, and they associate with Piwi to silence TEs inD. melanogaster. ArticleCASPubMed Google Scholar
Sarot, E., Payen-Groschene, G., Bucheton, A. & Pelisson, A. Evidence for a Piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics166, 1313–1321 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol.26, 2965–2975 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev.12, 3715–3727 (1998). ArticleCASPubMedPubMed Central Google Scholar
Klattenhoff, C. et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell12, 45–55 (2007). ArticleCASPubMed Google Scholar
Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature442, 203–207 (2006). ArticleCASPubMed Google Scholar
Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev.20, 1709–1714 (2006). ArticleCASPubMedPubMed Central Google Scholar
Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature442, 199–202 (2006). ArticlePubMed Google Scholar
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell.5, 337–350 (2003). ArticleCASPubMed Google Scholar
Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell119, 789–802 (2004). ArticleCASPubMed Google Scholar
Schueler, M. G. & Sullivan, B. A. Structural and functional dynamics of human centromeric chromatin. Annu. Rev. Genomics Hum. Genet.7, 301–313 (2006). ArticleCASPubMed Google Scholar
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature408, 796–815 (2000).
Dawe, R. K. & Henikoff, S. Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci.31, 662–669 (2006). ArticleCASPubMed Google Scholar
Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). ArticleCASPubMed Google Scholar
De La Fuente, R. et al. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells. Nature Cell Biol.8, 1448–1454 (2006). ArticleCASPubMed Google Scholar
Pidoux, A. L. & Allshire, R. C. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B Biol. Sci.360, 569–579 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lippman, Z. & Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature431, 364–370 (2004). ArticleCASPubMed Google Scholar
May, B. P., Lippman, Z. B., Fang, Y., Spector, D. L. & Martienssen, R. A. Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet.1, e79 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jiang, J., Birchler, J. A., Parrott, W. A. & Dawe, R. K. A molecular view of plant centromeres. Trends Plant Sci.8, 570–575 (2003). ArticleCASPubMed Google Scholar
Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol.6, 784–791 (2004). ArticleCASPubMed Google Scholar
Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19, 489–501 (2005). This report confirms that, as in lower eukaryotes, dicer and small-RNA-based mechanisms are responsible for centromere condensation in mammals. ArticleCASPubMedPubMed Central Google Scholar
Ohzeki, J., Nakano, M., Okada, T. & Masumoto, H. CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J. Cell Biol.159, 765–775 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wong, L. H. & Choo, K. H. Evolutionary dynamics of transposable elements at the centromere. Trends Genet.20, 611–616 (2004). ArticleCASPubMed Google Scholar
Martienssen, R. A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet.35, 213–214 (2003). ArticleCASPubMed Google Scholar
Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science277, 955–959 (1997). ArticleCASPubMed Google Scholar
Savitsky, M., Kwon, D., Georgiev, P., Kalmykova, A. & Gvozdev, V. Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev.20, 345–354 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gonzalo, S. et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biol.8, 416–424 (2006). ArticleCASPubMed Google Scholar
Schotta, G., Ebert, A., Dorn, R. & Reuter, G. Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin. Cell Dev. Biol.14, 67–75 (2003). ArticleCASPubMed Google Scholar
Sun, F. L. et al. _cis_-acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol. Cell. Biol.24, 8210–8220 (2004). ArticleCASPubMedPubMed Central Google Scholar
Haynes, K. A., Caudy, A. A., Collins, L. & Elgin, S. C. Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter. Curr. Biol.16, 2222–2227 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schotta, G., Ebert, A. & Reuter, G. SU(VAR)3–9 is a conserved key function in heterochromatic gene silencing. Genetica117, 149–158 (2003). ArticleCASPubMed Google Scholar
Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nature Rev. Genet.7, 703–713 (2006). ArticleCASPubMed Google Scholar
Lei, E. P. & Corces, V. G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genet.38, 936–941 (2006). ArticleCASPubMed Google Scholar
Cohen, D. E. et al. The DXPas34 repeat regulates random and imprinted X inactivation. Dev. Cell12, 57–71 (2007). ArticleCASPubMed Google Scholar
Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I. & Whitelaw, E. Metastable epialleles in mammals. Trends Genet.18, 348–351 (2002). ArticleCASPubMed Google Scholar
Jordan, I. K., Rogozin, I. B., Glazko, G. V. & Koonin, E. V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet.19, 68–72 (2003). ArticleCASPubMed Google Scholar
Romanish, M. T., Lock, W. M., de Lagemaat, L. N., Dunn, C. A. & Mager, D. L. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet.3, e10 (2007). ArticleCASPubMedPubMed Central Google Scholar
Garfinkel, D. J. Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet. Genome Res.110, 63–69 (2005). ArticleCASPubMed Google Scholar
Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics79, 628–634 (2002). This paper reports the discovery that tissue-specific transcripts that are generated from the outward-reading antisense promoter of LINE1 express neighbouring genes in large numbers. ArticleCASPubMed Google Scholar
Hodgetts, R. B. & O'Keefe, S. L. The mutant phenotype associated with _P_-element alleles of the vestigial locus in Drosophila melanogaster may be caused by a readthrough transcript initiated at the _P_-element promoter. Genetics157, 1665–1672 (2001). CASPubMedPubMed Central Google Scholar
Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genet.23, 314–318 (1999). This landmark report demonstrates that a mosaic coat-colour pattern is defined by the epigenetic state of a nearby TE, and that these epigenetic patterns are not fully erased when passed through meiosis, creating heritable patterns of epigenetic gene expression. ArticleCASPubMed Google Scholar
Blewitt, M. E., Vickaryous, N. K., Paldi, A., Koseki, H. & Whitelaw, E. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet.2, e49 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gaudet, F. et al. Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol. Cell. Biol.24, 1640–1648 (2004). ArticleCASPubMedPubMed Central Google Scholar
Matlik, K., Redik, K. & Speek, M. L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol.2006, 71753 (2006). ArticleCASPubMedPubMed Central Google Scholar
Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell7, 597–606 (2004). ArticleCASPubMed Google Scholar
Martienssen, R. & Baron, A. Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics136, 1157–1170 (1994). CASPubMedPubMed Central Google Scholar
Whitelaw, E. & Martin, D. I. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nature Genet.27, 361–365 (2001). In this provocative commentary, it is suggested that the differential metastable epigenetic silencing of TEs that are scattered throughout the genome produce intraspecies diversity. ArticleCASPubMed Google Scholar
Walker, E. L. Paramutation of the r1 locus of maize is associated with increased cytosine methylation. Genetics148, 1973–1981 (1998). CASPubMedPubMed Central Google Scholar
Stam, M., Belele, C., Dorweiler, J. E. & Chandler, V. L. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev.16, 1906–1918 (2002). ArticleCASPubMedPubMed Central Google Scholar
Alleman, M. et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature442, 295–298 (2006). ArticleCASPubMed Google Scholar
Woodhouse, M. R., Freeling, M. & Lisch, D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol.4, e339 (2006). ArticleCASPubMedPubMed Central Google Scholar
McGinnis, K. M., Springer, C., Lin, Y., Carey, C. C. & Chandler, V. Transcriptionally silenced transgenes in maize are activated by three mutations defective in paramutation. Genetics173, 1637–1647 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature441, 469–474 (2006). ArticleCASPubMed Google Scholar
Rubin, C. M., VandeVoort, C. A., Teplitz, R. L. & Schmid, C. W. Alu repeated DNAs are differentially methylated in primate germ cells. Nucleic Acids Res.22, 5121–5127 (1994). ArticleCASPubMedPubMed Central Google Scholar
Allen, E. et al. High concentrations of long interspersed nuclear element sequence distinguish monoallelically expressed genes. Proc. Natl Acad. Sci. USA100, 9940–9945 (2003). In this unique survey of the genome, LINE elements were found to be significantly associated with imprinted genes. ArticleCASPubMedPubMed Central Google Scholar
Greally, J. M. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc. Natl Acad. Sci. USA99, 327–332 (2002). ArticleCASPubMed Google Scholar
Reik, W. & Lewis, A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nature Rev. Genet.6, 403–410 (2005). ArticleCASPubMed Google Scholar
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science294, 2536–2539 (2001). ArticleCASPubMed Google Scholar
Youngson, N. A., Kocialkowski, S., Peel, N. & Ferguson-Smith, A. C. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J. Mol. Evol.61, 481–490 (2005). ArticleCASPubMed Google Scholar
Ono, R. et al. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics73, 232–237 (2001). ArticleCASPubMed Google Scholar
Davis, E. et al. RNAi-mediated allelic _trans_-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol.15, 743–749 (2005). ArticleCASPubMed Google Scholar
Chan, S. W., Zhang, X., Bernatavichute, Y. V. & Jacobsen, S. E. Two-step recruitment of RNA-directed DNA methylation to tandem repeats. PLoS Biol.4, e363 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kinoshita, T. et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science303, 521–523 (2004). ArticleCASPubMed Google Scholar
Walter, J., Hutter, B., Khare, T. & Paulsen, M. Repetitive elements in imprinted genes. Cytogenet. Genome Res.113, 109–115 (2006). ArticleCASPubMed Google Scholar
Sen, R. & Oltz, E. Genetic and epigenetic regulation of IgH gene assembly. Curr. Opin. Immunol.18, 237–242 (2006). ArticleCASPubMed Google Scholar
Bolland, D. J. et al. Antisense intergenic transcription in V(D)J recombination. Nature Immunol.5, 630–637 (2004). ArticleCAS Google Scholar
Kidwell, M. G. & Lisch, D. R. Transposable elements and host genome evolution. Trends Ecol. Evol.15, 95–99 (2000). ArticleCASPubMed Google Scholar
Doolittle, W. F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature284, 601–603 (1980). ArticleCASPubMed Google Scholar
Wang, Q. & Dooner, H. K. Eukaryotic transposable elements and genome evolution special feature: remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc. Natl Acad. Sci. USA103, 17644–17649 (2006). ArticleCASPubMedPubMed Central Google Scholar
Boissinot, S., Davis, J., Entezam, A., Petrov, D. & Furano, A. V. Fitness cost of LINE-1 (L1) activity in humans. Proc. Natl Acad. Sci. USA103, 9590–9594 (2006). ArticleCASPubMedPubMed Central Google Scholar
Seleme Mdel, C. et al. Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. Proc. Natl Acad. Sci. USA103, 6611–6616 (2006). This report demonstrates that there is a surprisingly high level of individual variation and TE-activity potential between humans. ArticleCAS Google Scholar
Deininger, P. L., Moran, J. V., Batzer, M. A. & Kazazian, H. H. Jr. Mobile elements and mammalian genome evolution. Curr. Opin. Genet. Dev.13, 651–658 (2003). ArticleCASPubMed Google Scholar
Sandovici, I. et al. Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Hum. Mol. Genet.14, 2135–2143 (2005). ArticleCASPubMed Google Scholar
Kazazian, H. H. Jr. Mobile elements: drivers of genome evolution. Science303, 1626–1632 (2004). ArticleCASPubMed Google Scholar
Slotkin, R. K., Freeling, M. & Lisch, D. Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nature Genet.37, 641–644 (2005). ArticleCASPubMed Google Scholar
Ronsseray, S., Josse, T., Boivin, A. & Anxolabehere, D. Telomeric transgenes and _trans_-silencing in Drosophila. Genetica117, 327–335 (2003). ArticleCASPubMed Google Scholar
Axtell, M. J., Jan, C., Rajagopalan, R. & Bartel, D. P. A two-hit trigger for siRNA biogenesis in plants. Cell127, 565–577 (2006). ArticleCASPubMed Google Scholar
Schlappi, M., Raina, R. & Fedoroff, N. Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell77, 427–437 (1994). ArticleCASPubMed Google Scholar
McClintock, B. The significance of responses of the genome to challenge. Science226, 792–801 (1984). ArticleCASPubMed Google Scholar
Capy, P., Gasperi, G., Biemont, C. & Bazin, C. Stress and transposable elements: co-evolution or useful parasites? Heredity85, 101–106 (2000). ArticleCASPubMed Google Scholar
Allshire, R. C., Javerzat, J. P., Redhead, N. J. & Cranston, G. Position effect variegation at fission yeast centromeres. Cell76, 157–169 (1994). ArticleCASPubMed Google Scholar
Kidwell, M. G. Reciprocal differences in female recombination associated with hybrid dysgenesis in Drosophila melanogaster. Genet. Res.30, 77–88 (1977). ArticleCASPubMed Google Scholar
Vieira, C., Aubry, P., Lepetit, D. & Biemont, C. A temperature cline in copy number for 412 but not roo/B104 retrotransposons in populations of Drosophila simulans. Proc. Biol. Sci.265, 1161–1165 (1998). ArticleCASPubMedPubMed Central Google Scholar
Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science304, 1971–1976 (2004). ArticleCASPubMed Google Scholar
Wolff, G. L., Kodell, R. L., Moore, S. R. & Cooney, C. A. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J.12, 949–957 (1998). ArticleCASPubMed Google Scholar
Cooney, C. A., Dave, A. A. & Wolff, G. L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr.132, 2393S–2400S (2002). This study demonstrates the surprising result that dietary supplementation of a methylation donor molecule heritably alters a TE-induced epiallele that confers coat colour in mice. ArticleCASPubMed Google Scholar
Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol.23, 5293–5300 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ivics, Z., Hackett, P. B., Plasterk, R. H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a _Tc1_-like transposon from fish, and its transposition in human cells. Cell91, 501–510 (1997). ArticleCASPubMed Google Scholar
Miskey, C., Izsvak, Z., Plasterk, R. H. & Ivics, Z. The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res.31, 6873–6881 (2003). ArticleCASPubMedPubMed Central Google Scholar
Biemont, C. & Vieira, C. What transposable elements tell us about genome organization and evolution: the case of Drosophila. Cytogenet. Genome Res.110, 25–34 (2005). ArticleCASPubMed Google Scholar
Kidwell, M. G. Transposable elements and the evolution of genome size in eukaryotes. Genetica115, 49–63 (2002). ArticleCASPubMed Google Scholar
Hawkins, J. S., Kim, H., Nason, J. D., Wing, R. A. & Wendel, J. F. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res.16, 1252–1261 (2006). ArticleCASPubMedPubMed Central Google Scholar
Piegu, B. et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res.16, 1262–1269 (2006). ArticleCASPubMedPubMed Central Google Scholar
Iida, S., Morita, Y., Choi, J. D., Park, K. I. & Hoshino, A. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Adv. Biophys.38, 141–159 (2004). ArticleCASPubMed Google Scholar
Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science293, 1070–1074 (2001). ArticleCASPubMed Google Scholar
Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol.3, e181 (2005). This study provides the missing evidence of the TE-family origin of the RAG transposase proteins. ArticleCASPubMedPubMed Central Google Scholar