Exploring genetic interactions and networks with yeast (original) (raw)
Davierwala, A. P. et al. The synthetic genetic interaction spectrum of essential genes. Nature Genet.37, 1147–1152 (2005). This paper describes the first major application of SGA analysis to mapping of genetic-interaction networks among essential genes, and reveals that they seem to act as highly connected hubs on the network. ArticleCASPubMed Google Scholar
Tong, A. H. Y. et al. Global mapping of the yeast genetic interaction network. Science303, 808–813 (2004). This study describes large-scale mapping of synthetic-lethal genetic interactions in yeast by SGA analysis. The results highlight the utility of genetic networks for discovering gene function and define the topology and general properties of genetic networks. ArticleCASPubMed Google Scholar
Hughes, T. R., Robinson, M. D., Mitsakakis, N. & Johnston, M. The promise of functional genomics: completing the encyclopedia of a cell. Curr. Opin. Microbiol.7, 546–554 (2004). ArticleCASPubMed Google Scholar
Dolinski, K. & Botstein, D. Changing perspective in yeast research nearly a decade after the genome sequence. Genome Res.15, 1611–1619 (2006). ArticleCAS Google Scholar
Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature418, 387–391 (2002). A landmark paper that describes the construction and use of the yeast deletion-mutant collection. CASPubMed Google Scholar
Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285, 901–906 (1999). ArticleCASPubMed Google Scholar
Hillenmeyer, M. E. et al. The chemical genomic portrait of the cell reveals a phenotype for all genes. (Submitted).
Hartman, J. L., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science291, 1001–1004 (2001). An excellent opinion piece that explores how eukaryotic genomes are buffered against genetic and environmental insults and outlines how synthetic-lethal interaction maps can be used to understand the relationship between genotype and phenotype. ArticleCASPubMed Google Scholar
Dobzhansky, T. Genetics of natural populations, XIII: recombination and variability in populations of Drosophila pseudoobscura. Genetics31, 269–290 (1946). CASPubMed CentralPubMed Google Scholar
Sturtevant, A. H. A highly specific complementary lethal system in Drosophila melanogaster. Genetics41, 118–123 (1956). CASPubMed CentralPubMed Google Scholar
Novick, P., Osmond, B. C. & Botstein, D. Suppressors of yeast actin mutants. Genetics121, 659–674 (1989). One of the first yeast papers to describe synthetic-lethal genetic interactions, with useful references to the earlyD. melanogasterliterature. CASPubMed CentralPubMed Google Scholar
Guarente, L. Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet.9, 362–366 (1993). ArticleCASPubMed Google Scholar
Bender, A. & Pringle, J. R. Use of a screen for synthetic lethal and multicopy suppressor mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol.11, 1295–1305 (1991). This manuscript describes the first use of a yeast colony sectoring assay as screen for synthetic lethal genetic interactions. ArticleCASPubMed CentralPubMed Google Scholar
Basson, M. E., Moore, R. L., O'Rear, J. & Rine, J. Identifying mutations in duplicated functions in Saccharomyces cerevisiae: recessive mutations in HMG-CoA reductase genes. Genetics117, 645–655 (1987). CASPubMed CentralPubMed Google Scholar
Suter, B., Auerbach, D. & Stagljar, I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques40, 625–644 (2006). ArticleCASPubMed Google Scholar
Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast10, 1793–1808 (1994). ArticleCASPubMed Google Scholar
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature423, 241–254 (2003). ArticleCASPubMed Google Scholar
Cliften, P. et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science301, 71–76 (2003). ArticleCASPubMed Google Scholar
Kastenmayer, J. P. et al. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res.16, 365–373 (2006). ArticleCASPubMed CentralPubMed Google Scholar
Mnainmeh, S. et al. Exploration of essential gene functions via titrable promoter alleles. Cell118, 31–44 (2004). Article Google Scholar
Dohmen, R. J. & Varshavsky, A. Heat-inducible degron and the making of conditional mutants. Methods Enzymol.399, 799–822 (2005). ArticleCASPubMed Google Scholar
Kanemaki, M., Sanchez-Diaz, A., Gambus, A. & Labib, K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature423, 720–724 (2003). ArticleCASPubMed Google Scholar
Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell123, 507–519 (2005). ArticleCASPubMed Google Scholar
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). ArticleCASPubMed Google Scholar
Butcher, R. A. et al. Microarray-based method for monitoring yeast overexpression strains reveals small-molecular targets in the TOR pathway. Nature Chem. Biol.2, 103–109 (2006). ArticleCAS Google Scholar
Zhu, H. et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001). ArticleCASPubMed Google Scholar
Gelperin, D. M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev.19, 2816–2826 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Tong, A. H. Y. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science294, 2364–2368 (2001). This paper describes development of the SGA method and its application to synthetic-lethal genetic-interaction mapping. The study also provides the first glimpse of a genetic-interaction network. ArticleCASPubMed Google Scholar
Pan, X. et al. A robust toolkit for functional profiling of the yeast genome. Mol. Cell16, 487–496 (2004). A study that describes the development of dSLAM, a transformation-based method of creating double mutants that provides a barcode microarray read-out for synthetic-lethal genetic interactions. ArticleCASPubMed Google Scholar
Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell124, 1069–1081 (2006). This work describes the application of dSLAM analysis to the study of genes involved in DNA synthesis and repair, and genome integrity. ArticleCASPubMed Google Scholar
Surana, U. et al. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell65, 145–161 (1991). ArticleCASPubMed Google Scholar
Reguly, T. et al. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol.5, 11 (2006). ArticlePubMed CentralPubMed Google Scholar
Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics143, 95–102 (1996). CASPubMed CentralPubMed Google Scholar
Measday, V. et al. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc. Natl Acad. Sci. USA102, 13956–13961 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell21, 319–330 (2006). ArticleCASPubMed Google Scholar
Lum, P. Y. et al. Discovering novel modes of action for therapeutic compounds unsing a genome-wide screen of yeast heterozygotes. Cell116, 121–137 (2004). ArticleCASPubMed Google Scholar
Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl Acad. Sci. USA101, 793–798 (2005). ArticleCAS Google Scholar
Haarer, B., Viggiano, S., Hibbs, M. A., Troyanskya, O. G. & Amberg, D. C. Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. Genes Dev.21, 148–159 (2007). ArticleCASPubMed CentralPubMed Google Scholar
Krogan, N. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature440, 637–643 (2006). ArticleCASPubMed Google Scholar
Collins, S. R., Schuldiner, M., Krogan, N. & Weissman, J. S. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol.7, R63 (2006). This manuscript describes a method for generating quantitative genetic-interaction data sets using SGA analysis. ArticlePubMed CentralCASPubMed Google Scholar
Segre, D., Deluna, A., Church, G. M. & Kishony, R. Modular epistasis in yeast metabolism. Nature Genet.37, 77–83 (2005). This study outlines the general concept that the expected phenotype of a double mutant is a multiplicative combination of two single mutants, and that scoring of deviations from this expected value generates genetic networks to describe functional relationships among metabolic pathways. ArticleCASPubMed Google Scholar
Evangelista, M. et al. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science276, 118–122 (1997). ArticleCASPubMed Google Scholar
Kamb, A. Mutation load, functional overlap, and synthetic lethality in the evolution and treatment of cancer. J. Theor. Biol.223, 205–213 (2003). ArticleCASPubMed Google Scholar
Goldberg, D. S. & Roth, F. P. Assessing experimentally derived interactions in a small word. Proc. Natl Acad. Sci. USA100, 4372–4376 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA98, 4569–4574 (2001). ArticleCASPubMedPubMed Central Google Scholar
Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature403, 623–627 (2000). ArticleCASPubMed Google Scholar
Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002). ArticleCASPubMed Google Scholar
Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature440, 631–636 (2006). ArticleCASPubMed Google Scholar
Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nature Biotech.23, 561–566 (2005). ArticleCAS Google Scholar
Bader, G. D. et al. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol.13, 344–356 (2003). ArticleCASPubMed Google Scholar
Zhang, L. V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol.4, 6 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Goehring, A. S. et al. Synthetic lethal analysis implicates Ste20p, a p21-activated protein kinase, in polarisome activation. Mol. Biol. Cell14, 1501–1516 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Brem, R. B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl Acad. Sci. USA102, 1572–1577 (2005). ArticleCASPubMedPubMed Central Google Scholar
Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature436, 701–703 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Consortium, I. H. A haplotype map of the human genome. Nature437, 1299–1320 (2005). ArticleCAS Google Scholar
Gresham, D. et al. Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science311, 1932–1936 (2006). ArticleCASPubMed Google Scholar
Perstein, E. O., Ruderfer, D. M., Roberts, D. C., Schreiber, S. L. & Kruglyak, L. Genetic basis of individual differences in response to small-molecule drugs in yeast. Nature Genet.39, 496–502 (2007). ArticleCAS Google Scholar
Moffat, J. & Sabatini, D. M. Building mammalian signalling pathways with RNAi screens. Nature Rev. Mol. Cell Biol.7, 177–187 (2006). ArticleCAS Google Scholar
Echeverri, C. J. & Perrimon, N. High-throughput RNAi screening in cultured cells: a user's guide. Nature Rev. Genet.7, 373–384 (2006). ArticleCASPubMed Google Scholar
Baugh, L. R. et al. Synthetic lethal analysis of Caenorhabditis elegans posterior embryonic patterning genes identified conserved genetic interactions. Genome Biol.6, R45 (2005). ArticlePubMed CentralCASPubMed Google Scholar
van Haaften, G., Vastenhouw, N. L., Nollen, E. A., Plasterk, R. H. & Tijsterman, M. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality. Proc. Natl Acad. Sci. USA101, 12992–12996 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in C. elegans. Nature Genet.38, 896–903 (2006). This study describes the first large-scale mapping of synthetic genetic networks in a metazoan, generated by feeding hypomorphicC. elegansmutants arrays of bacteria that expressed dsRNAi molecules targeting specific signalling pathways. ArticleCASPubMed Google Scholar
Badano, J. L., Teslovich, T. M. & Katsanis, N. The centrosome in human disease. Nature Rev. Genet.6, 194–205 (2005). ArticleCASPubMed Google Scholar
Wong, S. L. et al. Combining biological networks to predict genetic interactions. Proc. Natl Acad. Sci. USA101, 15682–25687 (2004). The first paper to show that functional genomics data sets can be used to predict genetic interactions. ArticleCASPubMedPubMed Central Google Scholar
Zhong, W. & Sternberg, P. Genome-wide prediction of C. elegans genetic interactions. Science311, 1481–1484 (2006). ArticleCASPubMed Google Scholar
Parsons, A. B. et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular targets and pathways. Nature Biotech.22, 62–69 (2004). This work describes how synthetic-lethal genetic-interaction maps function as a key for deciphering chemical-genetic maps, providing a means of linking compounds to their target pathways. ArticleCAS Google Scholar
Sharom, J. R., Bellows, D. S. & Tyers, M. From large networks to small molecules. Curr. Opin. Chem. Biol.8, 81–90 (2004). ArticleCASPubMed Google Scholar
Keith, C. T., Borisy, A. A. & Stockwell, B. R. The identification of combinations of molecules can result in highly effective drug regimens. Nature Rev. Drug Discov.4, 71–78 (2003). ArticleCAS Google Scholar
Phillips, P. C. The language of gene interaction. Genetics149, 1167–1171 (1998). A wonderful review of the language that is used to describe genetic interactions, including terms like epistasis, with historical context. CASPubMed CentralPubMed Google Scholar
Fisher, R. A. The correlations between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb.52, 399–433 (1918). Article Google Scholar
Sternberg, P., Stern, M. J., Clark, I. & Herskowitz, I. Activation of the yeast HO gene by release from muliple negative controls. Cell48, 567–577 (1987). ArticleCASPubMed Google Scholar
Hartwell, L. H., Culotti, J., Pringle, J. R. & Reid, B. J. Genetic control of cell division cycle in yeast. Science183, 46–51 (1974). ArticleCASPubMed Google Scholar
Sprague, G. F. Jr & Thorner, J. W. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression Vol. 2 (eds Jones, E. W., Pringle, J. R. & Broach, J. R.) 657–744 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1992). Google Scholar
Avery, L. & Wasserman, S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet.8, 312–316 (1992). ArticleCASPubMed CentralPubMed Google Scholar
Baker, B. S. & Ridge, K. A. Sex and the single cell. I. On the action of major loci affecting sex determination in Drosophila melanogaster. Genetics94, 383–423 (1980). CASPubMed CentralPubMed Google Scholar
Ihmels, J., Collins, S. R., Schuldiner, M., Krogan, N. & Weissman, J. S. Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Mol. Syst. Biol.3, 86 (2007). ArticlePubMed CentralCASPubMed Google Scholar
Harrison, R., Papp, B., Pal, C., Oliver, S. G. & Delneri, D. Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl Acad. Sci. USA104, 2307–2312 (2007). ArticleCASPubMedPubMed Central Google Scholar
Forsburg, S. L. The art and design of genetic screens: yeast. Nature Rev. Genet.2, 659–668 (2001). ArticleCASPubMed Google Scholar
Kaiser, C. A. & Schekman, R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell61, 723–733 (1990). ArticleCASPubMed Google Scholar
Finger, F. & Novick, P. Synthetic interactions of the post-golgi sec mutations of Saccharomyces cerevisiae. Genetics156, 943–951 (2000). CASPubMed CentralPubMed Google Scholar