Evolutionary microbial genomics: insights into bacterial host adaptation (original) (raw)
McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet.5, e1000565 (2009). This paper reports the most reduced bacterial genome identified to date. Like many mitochondrial genomes, the genetic code is altered, possibly owing to the loss of a reduced set of ribosome release factors. ArticlePubMedPubMed CentralCAS Google Scholar
Nakabachi, A. et al. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science314, 267 (2006). ArticleCASPubMed Google Scholar
Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science296, 2376–2379 (2002). ArticleCASPubMed Google Scholar
Moran, N. A., McLaughlin, H. J. & Sorek, R. The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science323, 379–382 (2009). ArticleCASPubMed Google Scholar
Fuxelius, H. H., Darby, A. C., Cho, N. H. & Andersson, S. G. Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction. Genome Biol.9, R42 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature396, 133–140 (1998). ArticleCASPubMed Google Scholar
Cho, N. H. et al. The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host-cell interaction genes. Proc. Natl Acad. Sci. USA104, 7981–7986 (2007). ArticleCASPubMedPubMed Central Google Scholar
Klasson, L. et al. The mosaic genome structure of the _Wolbachia w_Ri strain infecting Drosophila simulans. Proc. Natl Acad. Sci. USA106, 5725–5730 (2009). ArticleCASPubMedPubMed Central Google Scholar
Moya, A., Pereto, J., Gil, R. & Latorre, A. Learning how to live together: genomic insights into prokaryote–animal symbioses. Nature Rev. Genet.9, 218–229 (2008). ArticleCASPubMed Google Scholar
Corsaro, D., Venditti, D., Padula, M. & Valassina, M. Intracellular life. Crit. Rev. Microbiol.25, 39–79 (1999). ArticleCASPubMed Google Scholar
Boussau, B., Karlberg, E. O., Frank, A. C., Legault, B. A. & Andersson, S. G. Computational inference of scenarios for α-proteobacterial genome evolution. Proc. Natl Acad. Sci. USA101, 9722–9727 (2004). ArticleCASPubMedPubMed Central Google Scholar
Snel, B., Bork, P. & Huynen, M. A. Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res.12, 17–25 (2002). ArticleCASPubMed Google Scholar
Paulsen, I. T. et al. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl Acad. Sci. USA99, 13148–13153 (2002). ArticleCASPubMedPubMed Central Google Scholar
Buchner, P. Endosymbiosis of Animals With Plant Microorganisms (Interscience New York, 1965). Google Scholar
Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev. Microbiol.6, 776–788 (2008). ArticleCAS Google Scholar
Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature463, 311–317 (2010). ArticleCASPubMed Google Scholar
Albert-Weissenberger, C., Cazalet, C. & Buchrieser, C. Legionella pneumophila — a human pathogen that co-evolved with fresh water protozoa. Cell. Mol. Life Sci.64, 432–448 (2007). ArticleCASPubMed Google Scholar
Thomas, V. & McDonnell, G. Relationship between mycobacteria and amoebae: ecological and epidemiological concerns. Lett. Appl. Microbiol.45, 349–357 (2007). ArticleCASPubMed Google Scholar
Ogata, H. et al. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet.2, e76 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Salah, I. B., Ghigo, E. & Drancourt, M. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin. Microbiol. Infect.15, 894–905 (2009). ArticleCASPubMed Google Scholar
Schmitz-Esser, S. et al. The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J. Bacteriol.192, 1045–1057 (2010). ArticleCASPubMed Google Scholar
Birtles, R. J. et al. 'Candidatus Odyssella thessalonicensis' gen. nov., sp. nov., an obligate intracellular parasite of Acanthamoeba species. Int. J. Syst. Evol. Microbiol.50, 63–72 (2000). ArticleCASPubMed Google Scholar
Fritsche, T. R. et al. In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phylogenetically related to members of the order Rickettsiales. Appl. Environ. Microbiol.65, 206–212 (1999). ArticleCASPubMedPubMed Central Google Scholar
Horn, M., Fritsche, T. R., Gautom, R. K., Schleifer, K. H. & Wagner, M. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ. Microbiol.1, 357–367 (1999). ArticleCASPubMed Google Scholar
Horn, M. et al. Obligate bacterial endosymbionts of Acanthamoeba spp. related to the β-Proteobacteria: proposal of 'Candidatus Procabacter acanthamoebae' gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol.52, 599–605 (2002). ArticlePubMed Google Scholar
Horn, M. et al. Members of the Cytophaga-Flavobacterium-Bacteroides phylum as intracellular bacteria of acanthamoebae: proposal of 'Candidatus Amoebophilus asiaticus'. Environ. Microbiol.3, 440–449 (2001). ArticleCASPubMed Google Scholar
Amann, R. et al. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl. Environ. Microbiol.63, 115–121 (1997). ArticleCASPubMedPubMed Central Google Scholar
Birtles, R. J., Rowbotham, T. J., Storey, C., Marrie, T. J. & Raoult, D. Chlamydia-like obligate parasite of free-living amoebae. Lancet349, 925–926 (1997). ArticleCASPubMed Google Scholar
Pine, L., George, J. R., Reeves, M. W. & Harrell, W. K. Development of a chemically defined liquid medium for growth of Legionella pneumophila. J. Clin. Microbiol.9, 615–626 (1979). ArticleCASPubMedPubMed Central Google Scholar
Skrodzki, E. F. tularensis cultures on agar-peptone medium. Biul. Inst. Med. Morsk. Gdansk.17, 471–478 (1966). CASPubMed Google Scholar
Wong, M. T., Thornton, D. C., Kennedy, R. C. & Dolan, M. J. A chemically defined liquid medium that supports primary isolation of Rochalimaea (Bartonella) henselae from blood and tissue specimens. J. Clin. Microbiol.33, 742–744 (1995). ArticleCASPubMedPubMed Central Google Scholar
Stephens, R. S. Chlamydia: Intracellular Biology, Pathogenesis, and Immunity (Amer Society for Microbiology, Washington, D.C, 1999). Book Google Scholar
Hybiske, K. & Stephens, R. S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl Acad. Sci. USA104, 11430–11435 (2007). ArticleCASPubMedPubMed Central Google Scholar
Munson, M. A. et al. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J. Bacteriol.173, 6321–6324 (1991). ArticleCASPubMedPubMed Central Google Scholar
Clark, M. A., Moran, N. A., Baumann, P. & Wernegreen, J. J. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution54, 517–525 (2000). ArticleCASPubMed Google Scholar
Moran, N. A. & Wernegreen, J. J. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol. Evol.15, 321–326 (2000). ArticleCASPubMed Google Scholar
Mikkola, R. & Kurland, C. G. Selection of laboratory wild-type phenotype from natural isolates of Escherichia coli in chemostats. Mol. Biol. Evol.9, 394–402 (1992). CASPubMed Google Scholar
Zhu, P. et al. Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc. Natl Acad. Sci. USA98, 5234–5239 (2001). ArticleCASPubMedPubMed Central Google Scholar
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996). ArticleCASPubMed Google Scholar
Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature461, 1243–1247 (2009). ArticleCASPubMed Google Scholar
Zhong, S., Miller, S. P., Dykhuizen, D. E. & Dean, A. M. Transcription, translation, and the evolution of specialists and generalists. Mol. Biol. Evol.26, 2661–2678 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dethlefsen, L. & Schmidt, T. M. Performance of the translational apparatus varies with the ecological strategies of bacteria. J. Bacteriol.189, 3237–3245 (2007). ArticleCASPubMedPubMed Central Google Scholar
Andersson, S. G. & Kurland, C. G. Reductive evolution of resident genomes. Trends Microbiol.6, 263–268 (1998). ArticleCASPubMed Google Scholar
Funk, D. J., Wernegreen, J. J. & Moran, N. A. Intraspecific variation in symbiont genomes: bottlenecks and the aphid-buchnera association. Genetics157, 477–489 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bordenstein, S. R. & Reznikoff, W. S. Mobile DNA in obligate intracellular bacteria. Nature Rev. Microbiol.3, 688–699 (2005). ArticleCAS Google Scholar
Williams, T. A., Codoner, F. M., Toft, C. & Fares, M. A. Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends Genet.26, 47–51 (2009). ArticlePubMedCAS Google Scholar
McNally, D. & Fares, M. A. In silico identification of functional divergence between the multiple groEL gene paralogs in Chlamydiae. BMC Evol. Biol.7, 81 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Enninga, J. & Rosenshine, I. Imaging the assembly, structure and activity of type III secretion systems. Cell. Microbiol.11, 1462–1470 (2009). ArticleCASPubMed Google Scholar
Fronzes, R., Christie, P. J. & Waksman, G. The structural biology of type IV secretion systems. Nature Rev. Microbiol.7, 703–714 (2009). ArticleCAS Google Scholar
Ma, W., Dong, F. F., Stavrinides, J. & Guttman, D. S. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet.2, e209 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Frank, A. C., Alsmark, C. M., Thollesson, M. & Andersson, S. G. Functional divergence and horizontal transfer of type IV secretion systems. Mol. Biol. Evol.22, 1325–1336 (2005). ArticleCASPubMed Google Scholar
Toft, C., Williams, T. A. & Fares, M. A. Genome-wide functional divergence after the symbiosis of proteobacteria with insects unraveled through a novel computational approach. PLoS Comput. Biol.5, e1000344 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Maezawa, K. et al. Hundreds of flagellar basal bodies cover the cell surface of the endosymbiotic bacterium Buchnera aphidicola sp. strain APS. J. Bacteriol.188, 6539–6543 (2006). ArticleCASPubMedPubMed Central Google Scholar
Toft, C. & Fares, M. A. The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol. Biol. Evol.25, 2069–2076 (2008). ArticleCASPubMed Google Scholar
Quebatte, M. et al. The BatR/BatS two component regulatory system controls the adaptive response of Bartonella henselae during human endothelial cell infection. J. Bacteriol. 23 Apr 2010 (doi:10.1128/JB.01676-09). ArticleCASPubMedPubMed Central Google Scholar
Seubert, A., Hiestand, R., de la Cruz, F. & Dehio, C. A bacterial conjugation machinery recruited for pathogenesis. Mol. Microbiol.49, 1253–1266 (2003). ArticleCASPubMed Google Scholar
Nystedt, B., Frank, A. C., Thollesson, M. & Andersson, S. G. Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. Mol. Biol. Evol.25, 287–300 (2008). ArticleCASPubMed Google Scholar
Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev. Microbiol.2, 414–424 (2004). ArticleCAS Google Scholar
Dale, C. & Moran, N. A. Molecular interactions between bacterial symbionts and their hosts. Cell126, 453–465 (2006). ArticleCASPubMed Google Scholar
Berglund, E. C. et al. Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii. PLoS Genet.5, e1000546 (2009). This paper shows that a chromosomal segment of several hundred kilobases which contains gene clusters for various secretion systems is amplified and packaged into bacteriophage particles. The site covering the origin of the amplification process and the genes encoding the phage particles are conserved across strains, showing selection for mobility. ArticlePubMedPubMed CentralCAS Google Scholar
Wu, M. et al. Phylogenomics of the reproductive parasite _Wolbachia pipientis w_Mel: a streamlined genome overrun by mobile genetic elements. PLoS Biol.2, E69 (2004). ArticlePubMedPubMed Central Google Scholar
Nogueira, T. et al. Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr. Biol.19, 1683–1691 (2009). This paper shows that genes for secreted proteins tend to be located near mobile elements. It is thought that mobile elements enforce cooperation by reintroducing genes for secreted proteins into cheater cells in the populations that have lost these traits. ArticleCASPubMedPubMed Central Google Scholar
Mira, A., Ochman, H. & Moran, N. A. Deletional bias and the evolution of bacterial genomes. Trends Genet.17, 589–596 (2001). ArticleCASPubMed Google Scholar
Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl Acad. Sci. USA107, 2124–2129 (2010). The authors carried out a laboratory study of the evolution of a mutualistic relationship between sulphate-reducing and methanogenic microorganisms. The results contribute to the understanding of the evolutionary processes leading to the emergence and persistence of mutualistic associations. ArticleCASPubMedPubMed Central Google Scholar
Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull., J. J. The evolution of cooperation. Q. Rev. Biol.79, 135–160 (2004). ArticlePubMed Google Scholar
Frank, S. A. Host-symbiont conflict over the mixing of symbiotic lineages. Proc. Biol. Sci.263, 339–344 (1996). ArticleCASPubMed Google Scholar
Sachs, J. L. & Simms, E. L. Pathways to mutualism breakdown. Trends Ecol. Evol.21, 585–592 (2006). ArticlePubMed Google Scholar
Marchetti, M. et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol.8, e1000280 (2010). This paper shows that the transition from a pathogenic to a mutualistic relationship requires the acquisition of symbiotic genes and the modification of pre-existing functions through key mutations in regulatory and structural genes. The results reveal the role of adaptive changes in the recipient genome following horizontal transfers of symbiotic plasmids for the evolution of nodulation in Rhizobia. ArticlePubMedPubMed CentralCAS Google Scholar
Sachs, J. L., Ehinger, M. O. & Simms, E. L. Origins of cheating and loss of symbiosis in wild Bradyrhizobium. J. Evol. Biol.23, 1075–1089 (2010). ArticleCASPubMed Google Scholar
Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nature Rev. Microbiol.6, 741–751 (2008). ArticleCAS Google Scholar
Stouthamer, R., Breeuwer, J. A. & Hurst, G. D. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol.53, 71–102 (1999). ArticleCASPubMed Google Scholar
Langworthy, N. G. et al. Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proc. Biol. Sci.267, 1063–1069 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stevens, L., Giordano, R. & Fialho, R. F. Male-killing, nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria in the genus Wolbachia. Annu. Rev. Ecol. Syst.32, 519–545 (2001). Article Google Scholar
Foster, J. et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol.3, e121 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA107, 769–774 (2010). The first report of obligate bacteriocyte-associated nutritional mutualism in insect-infectingWolbachiastrains. As all previously described strains ofWolbachiaassociated with insects show commensal or parasitic relationships, the results reinforce the hypothesis that pathogens can evolve to mutualists, given the right conditions. ArticleCASPubMed Google Scholar
Perlman, S. J., Hunter, M. S. & Zchori-Fein, E. The emerging diversity of Rickettsia. Proc. Biol. Sci.273, 2097–2106 (2006). PubMedPubMed Central Google Scholar
Perotti, M. A., Clarke, H. K., Turner, B. D. & Braig, H. R. Rickettsia as obligate and mycetomic bacteria. FASEB J.20, 2372–2374 (2006). ArticleCASPubMed Google Scholar
Darby, A. C., Cho, N. H., Fuxelius, H. H., Westberg, J. & Andersson, S. G. Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet.23, 511–520 (2007). ArticleCASPubMed Google Scholar
Perez-Brocal, V. et al. A small microbial genome: the end of a long symbiotic relationship? Science314, 312–313 (2006). ArticleCASPubMed Google Scholar
Gosalbes, M. J., Lamelas, A., Moya, A. & Latorre, A. The striking case of tryptophan provision in the cedar aphid Cinara cedri. J. Bacteriol.190, 6026–6029 (2008). ArticleCASPubMedPubMed Central Google Scholar
Toft, C. & Fares, M. A. Selection for translational robustness in Buchnera aphidicola, endosymbiotic bacteria of aphids. Mol. Biol. Evol.26, 743–751 (2009). ArticleCASPubMed Google Scholar
Tamames, J. et al. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol. Biol.7, 181 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Hotopp, J. C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science317, 1753–1756 (2007). Evidence for the presence of DNA inserts ofWolbachiaspp. in the nuclear genomes of four insects and four nematode hosts. The results show that bacterial genes of endosymbiotic bacteria can be transferred to the nuclear genomes of their hosts. ArticleCAS Google Scholar
Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet.5, 123–135 (2004). ArticleCASPubMed Google Scholar
Nikoh, N. et al. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet.6, e1000827 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods6, 377–382 (2009). ArticleCASPubMed Google Scholar
Bergelson, J., Dwyer, G. & Emerson, J. J. Models and data on plant–enemy coevolution. Annu. Rev. Genet.35, 469–499 (2001). ArticleCASPubMed Google Scholar
Dawkins, R. & Krebs, J. R. Arms races between and within species. Proc. R. Soc. Lond. B. Biol. Sci.205, 489–511 (1979). ArticleCASPubMed Google Scholar
Clay, K. & Kover, P. X. The Red Queen Hypothesis and plant/pathogen interactions. Annu. Rev. Phytopathol.34, 29–50 (1996). ArticleCASPubMed Google Scholar
Stavrinides, J., Ma, W. & Guttman, D. S. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog.2, e104 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol.11, 725–736 (1994). CASPubMed Google Scholar
Crandall, K. A., Kelsey, C. R., Imamichi, H., Lane, H. C. & Salzman, N. P. Parallel evolution of drug resistance in HIV: failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol. Biol. Evol.16, 372–382 (1999). ArticleCASPubMed Google Scholar
Gu, X. Statistical methods for testing functional divergence after gene duplication. Mol. Biol. Evol.16, 1664–1674 (1999). ArticleCASPubMed Google Scholar
Gu, X. Mathematical modeling for functional divergence after gene duplication. J. Comput. Biol.8, 221–234 (2001). ArticleCASPubMed Google Scholar
Gu, X. Maximum-likelihood approach for gene family evolution under functional divergence. Mol. Biol. Evol.18, 453–464 (2001). ArticleCASPubMed Google Scholar
Van der Goot, F. G. Pore-Forming Toxins (Springer Verlag, Berlin, 2001). Book Google Scholar
Gonzalez, M. R., Bischofberger, M., Pernot, L., van der Goot, F. G. & Freche, B. Bacterial pore-forming toxins: the (w)hole story? Cell. Mol. Life Sci.65, 493–507 (2008). ArticleCASPubMed Google Scholar
Galan, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science284, 1322–1328 (1999). ArticleCASPubMed Google Scholar
Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol.4, 811–825 (2006). ArticleCAS Google Scholar
Gophna, U., Ron, E. Z. & Graur, D. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene312, 151–163 (2003). ArticleCASPubMed Google Scholar
Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev.73, 775–808 (2009). ArticleCASPubMedPubMed Central Google Scholar
Stebbins, C. E. & Galan, J. E. Structural mimicry in bacterial virulence. Nature412, 701–705 (2001). ArticleCASPubMed Google Scholar
Price, C. T. et al. Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog.5, e1000704 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Yarbrough, M. L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science323, 269–272 (2009). ArticleCASPubMed Google Scholar
Ishoey, T., Woyke, T., Stepanauskas, R., Novotny, M. & Lasken, R. S. Genomic sequencing of single microbial cells from environmental samples. Curr. Opin. Microbiol.11, 198–204 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lasken, R. S. & Stockwell, T. B. Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol.7, 19 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet.38, 525–552 (2004). ArticleCASPubMed Google Scholar
Guell, M. et al. Transcriptome complexity in a genome-reduced bacterium. Science326, 1268–1271 (2009). ArticlePubMedCAS Google Scholar
Kuhner, S. et al. Proteome organization in a genome-reduced bacterium. Science326, 1235–1240 (2009). ArticlePubMedCAS Google Scholar
Yus, E. et al. Impact of genome reduction on bacterial metabolism and its regulation. Science326, 1263–1268 (2009). In references 120–122, the metabolic, interactomic and transcriptomic maps are deciphered in the cell-surface parasiteMycoplasma pneumoniae. The authors show protein multi-functionality, explaining how cellular functions can be maintained despite a small gene set. ArticleCASPubMed Google Scholar
Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science319, 1215–1220 (2008). ArticleCASPubMed Google Scholar
Gibson, D. G. et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc. Natl Acad. Sci. USA105, 20404–20409 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lartigue, C. et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science325, 1693–1696 (2009). ArticleCASPubMed Google Scholar
Klasson, L. & Andersson, S. G. Research on small genomes: implications for synthetic biology. Bioessays32, 288–295 (2010). ArticleCASPubMed Google Scholar
Pal, C. et al. Chance and necessity in the evolution of minimal metabolic networks. Nature440, 667–670 (2006). ArticleCASPubMed Google Scholar